A multi-step approach for tongue image classification in patients with diabetes

舌头 人工智能 聚类分析 模式识别(心理学) 计算机科学 人口 医学 糖尿病 病理 环境卫生 内分泌学
作者
Jun Li,Jing-bin Huang,Tao Jiang,Liping Tu,Longtao Cui,Ji Cui,Xuxiang Ma,Xinghua Yao,Yulin Shi,Sihan Wang,Yu Wang,Jiayi Liu,Yongzhi Li,Changle Zhou,Xiaojuan Hu,Jiatuo Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 105935-105935 被引量:32
标识
DOI:10.1016/j.compbiomed.2022.105935
摘要

In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility. Based on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis. We use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information. Based on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%. The study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cfffff完成签到,获得积分10
刚刚
monika_zhu完成签到,获得积分10
1秒前
彭于晏应助FXQ112采纳,获得10
1秒前
Chun完成签到 ,获得积分10
2秒前
2秒前
科研通AI5应助kang采纳,获得20
4秒前
daishuyue完成签到 ,获得积分10
5秒前
5秒前
天真的映波完成签到,获得积分10
6秒前
8秒前
lalala完成签到 ,获得积分10
8秒前
洛洛发布了新的文献求助10
9秒前
bkagyin应助疯狂的冬瓜采纳,获得10
9秒前
9秒前
AST完成签到,获得积分10
10秒前
堃kun发布了新的文献求助10
11秒前
夏之茗完成签到,获得积分10
11秒前
11秒前
12秒前
所所应助洛洛采纳,获得10
12秒前
科研民工_郭完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
15秒前
16秒前
16秒前
monika_zhu发布了新的文献求助50
16秒前
科研通AI5应助帅气寒香采纳,获得10
16秒前
realssr发布了新的文献求助10
16秒前
可爱的函函应助幸福大白采纳,获得10
17秒前
Nox发布了新的文献求助10
18秒前
3D发布了新的文献求助10
19秒前
DaLu发布了新的文献求助10
21秒前
22秒前
活力的幻枫完成签到,获得积分10
23秒前
AoAoo完成签到,获得积分10
25秒前
Ya发布了新的文献求助10
26秒前
27秒前
Nox完成签到,获得积分20
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763195
求助须知:如何正确求助?哪些是违规求助? 3307760
关于积分的说明 10141294
捐赠科研通 3022779
什么是DOI,文献DOI怎么找? 1659342
邀请新用户注册赠送积分活动 792527
科研通“疑难数据库(出版商)”最低求助积分说明 754994