A multi-step approach for tongue image classification in patients with diabetes

舌头 人工智能 聚类分析 模式识别(心理学) 计算机科学 人口 医学 糖尿病 病理 环境卫生 内分泌学
作者
Jun Li,Jing-bin Huang,Tao Jiang,Liping Tu,Longtao Cui,Ji Cui,Xuxiang Ma,Xinghua Yao,Yulin Shi,Sihan Wang,Yu Wang,Jiayi Liu,Yongzhi Li,Changle Zhou,Xiaojuan Hu,Jiatuo Xu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 105935-105935 被引量:27
标识
DOI:10.1016/j.compbiomed.2022.105935
摘要

In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility. Based on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis. We use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information. Based on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%. The study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助犹豫白风采纳,获得10
1秒前
流星雨发布了新的文献求助10
1秒前
兰陵萧笑声完成签到,获得积分10
1秒前
华仔应助煤灰采纳,获得10
2秒前
深情安青应助豆豆采纳,获得10
3秒前
澈千子完成签到,获得积分10
4秒前
NexusExplorer应助我的miemie采纳,获得10
5秒前
不懈奋进应助是问采纳,获得30
6秒前
爱吃烤苕皮完成签到,获得积分10
7秒前
弯弯完成签到,获得积分10
8秒前
zyx174733完成签到,获得积分10
8秒前
8秒前
成呈发布了新的文献求助10
8秒前
8秒前
qqq发布了新的文献求助30
9秒前
不外如是发布了新的文献求助30
10秒前
12秒前
大地发布了新的文献求助10
13秒前
14秒前
犹豫白风完成签到,获得积分10
14秒前
baby发布了新的文献求助10
15秒前
15秒前
lby发布了新的文献求助30
16秒前
16秒前
16秒前
17秒前
泯珉发布了新的文献求助10
17秒前
cassie_kk完成签到 ,获得积分10
19秒前
19秒前
快学吧完成签到,获得积分10
19秒前
19秒前
煤灰发布了新的文献求助10
20秒前
20秒前
phoenix完成签到,获得积分0
20秒前
徐伟康完成签到 ,获得积分10
21秒前
微信研友完成签到,获得积分10
21秒前
21秒前
清爽的孤萍完成签到 ,获得积分10
22秒前
xiaoxiao发布了新的文献求助10
23秒前
居学尉发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145115
求助须知:如何正确求助?哪些是违规求助? 2796489
关于积分的说明 7819996
捐赠科研通 2452771
什么是DOI,文献DOI怎么找? 1305202
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449