Group Sparsity Mixture Model and Its Application on Image Denoising

混合模型 降噪 人工智能 模式识别(心理学) 计算机科学 图像(数学) 群(周期表) 图像处理 化学 有机化学
作者
Haosen Liu,Laquan Li,Jiangbo Lu,Shan Tan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5677-5690 被引量:1
标识
DOI:10.1109/tip.2022.3193754
摘要

Prior learning is a fundamental problem in the field of image processing. In this paper, we conduct a detailed study on (1) how to model and learn the prior of the image patch group, which consists of a group of non-local similar image patches, and (2) how to apply the learned prior to the whole image denoising task. To tackle the first problem, we propose a new prior model named Group Sparsity Mixture Model (GSMM). With the bilateral matrix multiplication, the GSMM can model both the local feature of a single patch and the relation among non-local similar patches, and thus it is very suitable for patch group based prior learning. This is supported by the parameter analysis which demonstrates that the learned GSMM successfully captures the inherent strong sparsity embodied in the image patch group. Besides, as a mixture model, GSMM can be used for patch group classification. This makes the image denoising method based on GSMM capable of processing patch groups flexibly. To tackle the second problem, we propose an efficient and effective patch group based image denoising framework, which is plug-and-play and compatible with any patch group prior model. Using this framework, we construct two versions of GSMM based image denoising methods, both of which outperform the competing methods based on other prior models, e.g., Field of Experts (FoE) and Gaussian Mixture Model (GMM). Also, the better version is competitive with the state-of-the-art model based method WNNM with about ×8 faster average running speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慧智兰心完成签到,获得积分10
刚刚
易子发布了新的文献求助10
刚刚
1秒前
1秒前
Imp发布了新的文献求助10
2秒前
超帅的天曼完成签到,获得积分10
2秒前
科研通AI6应助RICK采纳,获得10
2秒前
3秒前
Criminology34应助开放的白玉采纳,获得10
3秒前
halona完成签到,获得积分10
3秒前
1+1举报K_Debug求助涉嫌违规
3秒前
4秒前
Ming完成签到,获得积分10
4秒前
邓邓发布了新的文献求助10
5秒前
小翟不宅发布了新的文献求助10
5秒前
柏文鸽关注了科研通微信公众号
6秒前
嘻嘻哈哈应助益生菌小哥采纳,获得10
6秒前
wzj发布了新的文献求助10
6秒前
6秒前
7秒前
酷波er应助fengyeou采纳,获得10
7秒前
7秒前
Lucas应助普外科老白采纳,获得10
7秒前
wangchaofk发布了新的文献求助10
8秒前
八宝粥发布了新的文献求助10
8秒前
陈瞿硕发布了新的文献求助10
8秒前
杨晓沛发布了新的文献求助10
8秒前
8秒前
8秒前
易子完成签到 ,获得积分10
10秒前
win发布了新的文献求助10
10秒前
KC完成签到 ,获得积分10
10秒前
星辰完成签到,获得积分10
10秒前
10秒前
古风欧完成签到,获得积分10
11秒前
11秒前
zer0完成签到,获得积分10
12秒前
方旋发布了新的文献求助10
13秒前
爱听歌的寒风完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261106
求助须知:如何正确求助?哪些是违规求助? 4422247
关于积分的说明 13765679
捐赠科研通 4296652
什么是DOI,文献DOI怎么找? 2357478
邀请新用户注册赠送积分活动 1353844
关于科研通互助平台的介绍 1315035