Group Sparsity Mixture Model and Its Application on Image Denoising

混合模型 降噪 人工智能 模式识别(心理学) 计算机科学 图像(数学) 群(周期表) 图像处理 化学 有机化学
作者
Haosen Liu,Laquan Li,Jiangbo Lu,Shan Tan
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 5677-5690 被引量:1
标识
DOI:10.1109/tip.2022.3193754
摘要

Prior learning is a fundamental problem in the field of image processing. In this paper, we conduct a detailed study on (1) how to model and learn the prior of the image patch group, which consists of a group of non-local similar image patches, and (2) how to apply the learned prior to the whole image denoising task. To tackle the first problem, we propose a new prior model named Group Sparsity Mixture Model (GSMM). With the bilateral matrix multiplication, the GSMM can model both the local feature of a single patch and the relation among non-local similar patches, and thus it is very suitable for patch group based prior learning. This is supported by the parameter analysis which demonstrates that the learned GSMM successfully captures the inherent strong sparsity embodied in the image patch group. Besides, as a mixture model, GSMM can be used for patch group classification. This makes the image denoising method based on GSMM capable of processing patch groups flexibly. To tackle the second problem, we propose an efficient and effective patch group based image denoising framework, which is plug-and-play and compatible with any patch group prior model. Using this framework, we construct two versions of GSMM based image denoising methods, both of which outperform the competing methods based on other prior models, e.g., Field of Experts (FoE) and Gaussian Mixture Model (GMM). Also, the better version is competitive with the state-of-the-art model based method WNNM with about ×8 faster average running speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Riveror发布了新的文献求助10
刚刚
小丛雨发布了新的文献求助10
1秒前
ll完成签到,获得积分10
2秒前
天南完成签到,获得积分10
2秒前
lin01完成签到 ,获得积分10
2秒前
2秒前
3秒前
Linanana完成签到,获得积分10
3秒前
薰硝壤应助冷酷的向日葵采纳,获得20
4秒前
5秒前
yoke完成签到,获得积分10
5秒前
北执完成签到,获得积分10
6秒前
ll发布了新的文献求助10
6秒前
英俊的铭应助hwezhu采纳,获得10
6秒前
7秒前
雅nice发布了新的文献求助10
7秒前
8秒前
Kimberley给Kimberley的求助进行了留言
8秒前
kjbt完成签到,获得积分20
9秒前
9秒前
吉祥应助纪鹏飞采纳,获得20
9秒前
所所应助HYN采纳,获得10
10秒前
调研昵称发布了新的文献求助10
11秒前
12秒前
314gjj完成签到,获得积分10
12秒前
mervynzcy发布了新的文献求助10
13秒前
Lucky应助克己复礼采纳,获得50
13秒前
13秒前
夏小安发布了新的文献求助20
14秒前
14秒前
15秒前
cm发布了新的文献求助10
15秒前
情怀应助JYQ采纳,获得10
15秒前
15秒前
15秒前
kjbt发布了新的文献求助10
16秒前
16秒前
雅nice完成签到,获得积分10
16秒前
鳗鱼飞阳发布了新的文献求助30
17秒前
名金学南发布了新的文献求助10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136000
求助须知:如何正确求助?哪些是违规求助? 2786769
关于积分的说明 7779614
捐赠科研通 2443019
什么是DOI,文献DOI怎么找? 1298798
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870