清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Deep-Learning-Based Data-Management Scheme for Intelligent Control of Wastewater Treatment Processes Under Resource-Constrained IoT Systems

计算机科学 资源管理(计算) 分布式计算 稳健性(进化) 人工神经网络 工作流程 深度学习 数据预处理 人工智能 数据挖掘 机器学习 数据库 生物化学 基因 化学
作者
Yu Shen,Zhu Xiao-gang,Zhiwei Guo,Keping Yu,Osama Alfarraj,Victor C. M. Leung,Joel J. P. C. Rodrigues
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 25757-25770 被引量:25
标识
DOI:10.1109/jiot.2024.3388043
摘要

Effective data management schemes have always been the major demand in universal industrial Internet of Things (IoT) systems, especially in resource-constrained scenarios. In realistic wastewater treatment process (WTP), only limited monitoring data resource can be available due to some digital constraint. Aiming at this practical issue, this work explores utilization of deep neural network to deal with such practical issue in the objective situation. Therefore, a deep learning-based data management scheme for intelligent control of WTP under resource-constrained IoT systems, is proposed in this paper. Firstly, a specific data encoding and preprocessing approach is developed for the objective business scenario. Then, the detailed workflow of a deep neural network structure is applied to predict key intermediate parameters which can further guide control decision. Finally, a comprehensive series of experiments are conducted on a real-world dataset which covers a range of one year. Both efficiency and robustness of the proposal are tested by introducing several performance metrics. The results show that it can have proper prediction effect in such resource-constrained environment, which can facilitate following intelligent control operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时老完成签到 ,获得积分10
17秒前
闲人颦儿完成签到,获得积分10
26秒前
38秒前
39秒前
1分钟前
1分钟前
笔墨纸砚完成签到 ,获得积分10
1分钟前
阿洁完成签到,获得积分10
2分钟前
阿洁发布了新的文献求助10
2分钟前
复杂白凡应助阿洁采纳,获得10
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助Maomaojiangjiang采纳,获得10
2分钟前
2分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
3分钟前
充电宝应助哭泣的芷蝶采纳,获得10
3分钟前
江南之南完成签到 ,获得积分10
3分钟前
4分钟前
chichenglin完成签到 ,获得积分0
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
斯文听寒完成签到 ,获得积分10
5分钟前
6分钟前
HS完成签到,获得积分10
6分钟前
MLR发布了新的文献求助10
6分钟前
6分钟前
vitamin完成签到 ,获得积分10
6分钟前
6分钟前
thginK9z完成签到,获得积分10
7分钟前
mzhang2完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得30
7分钟前
打打应助hamliton采纳,获得10
7分钟前
7分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529358
求助须知:如何正确求助?哪些是违规求助? 4618481
关于积分的说明 14562694
捐赠科研通 4557545
什么是DOI,文献DOI怎么找? 2497604
邀请新用户注册赠送积分活动 1477776
关于科研通互助平台的介绍 1449269