AlphaFun: Structural-Alignment-Based Proteome Annotation Reveals why the Functionally Unknown Proteins (uPE1) Are So Understudied

蛋白质组 计算生物学 人类蛋白质组计划 生物 基因组 注释 人类基因组 基因组计划 功能(生物学) 蛋白质组学 遗传学 基因
作者
Hengxin Pan,Zhenqi Wu,Wanting Liu,Gong Zhang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (5): 1593-1602
标识
DOI:10.1021/acs.jproteome.3c00678
摘要

With the rapid expansion of sequencing of genomes, the functional annotation of proteins becomes a bottleneck in understanding proteomes. The Chromosome-centric Human Proteome Project (C-HPP) aims to identify all proteins encoded by the human genome and find functional annotations for them. However, until now there are still 1137 identified human proteins without functional annotation, called uPE1 proteins. Sequence alignment was insufficient to predict their functions, and the crystal structures of most proteins were unavailable. In this study, we demonstrated a new functional annotation strategy, AlphaFun, based on structural alignment using deep-learning-predicted protein structures. Using this strategy, we functionally annotated 99% of the human proteome, including the uPE1 proteins and missing proteins, which have not been identified yet. The accuracy of the functional annotations was validated using the known-function proteins. The uPE1 proteins shared similar functions to the known-function PE1 proteins and tend to express only in very limited tissues. They are evolutionally young genes and thus should conduct functions only in specific tissues and conditions, limiting their occurrence in commonly studied biological models. Such functional annotations provide hints for functional investigations on the uPE1 proteins. This proteome-wide-scale functional annotation strategy is also applicable to any other species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助坏坏的小鱼鱼采纳,获得10
刚刚
kkkim完成签到 ,获得积分10
1秒前
qianhong发布了新的文献求助10
1秒前
小慧发布了新的文献求助10
2秒前
2秒前
2秒前
Lily发布了新的文献求助10
2秒前
2秒前
勤劳绿柳完成签到 ,获得积分10
3秒前
SciGPT应助科研小达人采纳,获得10
3秒前
火星老太发布了新的文献求助10
4秒前
小葡萄发布了新的文献求助10
4秒前
标致白卉发布了新的文献求助10
5秒前
佳妮发布了新的文献求助10
6秒前
哞哞完成签到,获得积分10
6秒前
乌龙茶完成签到 ,获得积分10
7秒前
YaHe发布了新的文献求助10
7秒前
Owen应助Suzzw98采纳,获得10
7秒前
7秒前
8秒前
Y2024完成签到,获得积分10
9秒前
蝴蝶能飞多远完成签到,获得积分10
12秒前
嘟嘟嘟发布了新的文献求助10
13秒前
标致白卉完成签到,获得积分20
13秒前
科目三应助Lily采纳,获得10
13秒前
piglit发布了新的文献求助10
14秒前
15秒前
漫镜完成签到,获得积分10
17秒前
TreasureDB完成签到,获得积分10
18秒前
忧伤的鸡翅完成签到 ,获得积分10
18秒前
18秒前
19秒前
lh发布了新的文献求助10
19秒前
顾矜应助封尘逸动采纳,获得10
19秒前
小巧的铅笔完成签到 ,获得积分10
19秒前
hdd完成签到,获得积分10
20秒前
袁..发布了新的文献求助10
20秒前
锟斤拷完成签到,获得积分20
20秒前
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515723
求助须知:如何正确求助?哪些是违规求助? 3097941
关于积分的说明 9237378
捐赠科研通 2792936
什么是DOI,文献DOI怎么找? 1532767
邀请新用户注册赠送积分活动 712272
科研通“疑难数据库(出版商)”最低求助积分说明 707233