An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things

端到端原则 入侵检测系统 互联网 计算机科学 工业互联网 入侵 最终用户 计算机网络 物联网 计算机安全 万维网 地质学 地球化学
作者
Karima Hassini,Safae Khalis,Omar Habibi,Mohammed Chemmakha,Mohamed Lazaar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:294: 111785-111785 被引量:7
标识
DOI:10.1016/j.knosys.2024.111785
摘要

The Industrial-Internet of Things (I-IoT) stands out as one of the most dynamically evolving subfields within the expansive realm of the Internet of Things (IoT). Its exponential growth is reshaping industrial landscapes, bringing forth transformative innovations and advancements at an unprecedented pace, as the core of Industry 4.0. Among the formidable challenges faced by the Industrial-Internet of Things, cybersecurity stands out as a critical concern. Deep learning-based Intrusion Detection System (IDS) solutions showcase their steadfast ability to secure resource-limited, investigation-demanding, and complex I-IoT environments. However, their effectiveness hinges not only on the model but also on the dataset on which they are trained. While numerous literature studies delve into this field, existing proposed models often grapple with challenges. They are frequently trained on outdated, non-diverse datasets or lack specific features crucial for I-IoT networks. Recent efforts, thankfully, introduce more adequate datasets like Edge-IIoTset. Researchers leverage this extensive dataset to train models, focusing on detecting the 14 sophisticated attacks. These attacks predominantly target real I-IoT networks. Despite these efforts, none of the existing models proves entirely efficient. A review of literature solutions reveals that many models cannot detect all 15 classes in the dataset. Some are multi-staged or overly complex. In response to these challenges, this paper presents an End-to-End learning , non-complex CNN1D model tailored to the specific problem of detecting 14 sophisticated threats targeting I-IoT environments. Our proposed model demonstrated remarkable efficiency with an accuracy of 99.96%, successfully detecting all 15 classes in the Edge-IIoTset dataset with a minimal loss of 0.0011. Not only that, but our model was validated with k-fold cross-validation, demonstrating its efficiency in preserving the same performance on unseen data and its ability to be generalized for real-world I-IoT environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌淀粉肠完成签到 ,获得积分10
刚刚
背书强完成签到 ,获得积分10
2秒前
嘻嘻哈哈发布了新的文献求助10
2秒前
左鞅完成签到 ,获得积分10
3秒前
4秒前
落霞与孤鹜齐飞完成签到,获得积分10
5秒前
胡图图完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Kelly完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
轻松红酒发布了新的文献求助10
8秒前
10秒前
lsbrc完成签到 ,获得积分10
10秒前
13秒前
Bismarck完成签到,获得积分10
15秒前
松柏完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
光能使者完成签到 ,获得积分10
21秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
25秒前
25秒前
我服有点黑完成签到,获得积分10
28秒前
牙膏616完成签到,获得积分10
30秒前
赵一完成签到 ,获得积分10
31秒前
激动的xx完成签到 ,获得积分10
32秒前
haralee完成签到 ,获得积分10
36秒前
mimi完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
mike2012完成签到 ,获得积分10
41秒前
42秒前
研友_nv2r4n完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773340
求助须知:如何正确求助?哪些是违规求助? 5610028
关于积分的说明 15430945
捐赠科研通 4905868
什么是DOI,文献DOI怎么找? 2639872
邀请新用户注册赠送积分活动 1587768
关于科研通互助平台的介绍 1542775