An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things

端到端原则 入侵检测系统 互联网 计算机科学 工业互联网 入侵 最终用户 计算机网络 物联网 计算机安全 万维网 地质学 地球化学
作者
Karima Hassini,Safae Khalis,Omar Habibi,Mohammed Chemmakha,Mohamed Lazaar
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:294: 111785-111785 被引量:7
标识
DOI:10.1016/j.knosys.2024.111785
摘要

The Industrial-Internet of Things (I-IoT) stands out as one of the most dynamically evolving subfields within the expansive realm of the Internet of Things (IoT). Its exponential growth is reshaping industrial landscapes, bringing forth transformative innovations and advancements at an unprecedented pace, as the core of Industry 4.0. Among the formidable challenges faced by the Industrial-Internet of Things, cybersecurity stands out as a critical concern. Deep learning-based Intrusion Detection System (IDS) solutions showcase their steadfast ability to secure resource-limited, investigation-demanding, and complex I-IoT environments. However, their effectiveness hinges not only on the model but also on the dataset on which they are trained. While numerous literature studies delve into this field, existing proposed models often grapple with challenges. They are frequently trained on outdated, non-diverse datasets or lack specific features crucial for I-IoT networks. Recent efforts, thankfully, introduce more adequate datasets like Edge-IIoTset. Researchers leverage this extensive dataset to train models, focusing on detecting the 14 sophisticated attacks. These attacks predominantly target real I-IoT networks. Despite these efforts, none of the existing models proves entirely efficient. A review of literature solutions reveals that many models cannot detect all 15 classes in the dataset. Some are multi-staged or overly complex. In response to these challenges, this paper presents an End-to-End learning , non-complex CNN1D model tailored to the specific problem of detecting 14 sophisticated threats targeting I-IoT environments. Our proposed model demonstrated remarkable efficiency with an accuracy of 99.96%, successfully detecting all 15 classes in the Edge-IIoTset dataset with a minimal loss of 0.0011. Not only that, but our model was validated with k-fold cross-validation, demonstrating its efficiency in preserving the same performance on unseen data and its ability to be generalized for real-world I-IoT environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独孤幻月96应助Master_Ye采纳,获得10
刚刚
刚刚
pluto应助紫罗兰花海采纳,获得10
1秒前
1秒前
justin发布了新的文献求助10
1秒前
MH完成签到,获得积分10
1秒前
2秒前
无言已对完成签到,获得积分10
2秒前
CipherSage应助徐昊雯采纳,获得10
3秒前
西瓜发布了新的文献求助10
3秒前
Owen应助舒心的凝莲采纳,获得10
4秒前
mhq发布了新的文献求助50
4秒前
4秒前
YZZ完成签到,获得积分10
5秒前
5秒前
水木完成签到,获得积分10
5秒前
thuuu发布了新的文献求助10
5秒前
无言已对发布了新的文献求助10
5秒前
深情安青应助疯狂的麦咭采纳,获得10
6秒前
田様应助小小怪下士采纳,获得10
6秒前
6秒前
动人的雁枫完成签到 ,获得积分10
6秒前
情怀应助Christine采纳,获得30
8秒前
9秒前
nbing完成签到,获得积分10
9秒前
动人的雁枫关注了科研通微信公众号
10秒前
geoyuan完成签到,获得积分10
10秒前
10秒前
10秒前
PANGDA完成签到 ,获得积分10
11秒前
贾翔发布了新的文献求助10
11秒前
12秒前
小明明应助Master_Ye采纳,获得10
12秒前
英俊的铭应助可不采纳,获得10
13秒前
Garfield完成签到,获得积分10
13秒前
无聊的翠芙完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
可乐清欢发布了新的文献求助10
14秒前
tangaohao_123456完成签到,获得积分10
14秒前
15秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646