An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things

端到端原则 入侵检测系统 互联网 计算机科学 工业互联网 入侵 最终用户 计算机网络 物联网 计算机安全 万维网 地质学 地球化学
作者
Karima Hassini,Safae Khalis,Omar Habibi,Mohammed Chemmakha,Mohamed Lazaar
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:294: 111785-111785 被引量:7
标识
DOI:10.1016/j.knosys.2024.111785
摘要

The Industrial-Internet of Things (I-IoT) stands out as one of the most dynamically evolving subfields within the expansive realm of the Internet of Things (IoT). Its exponential growth is reshaping industrial landscapes, bringing forth transformative innovations and advancements at an unprecedented pace, as the core of Industry 4.0. Among the formidable challenges faced by the Industrial-Internet of Things, cybersecurity stands out as a critical concern. Deep learning-based Intrusion Detection System (IDS) solutions showcase their steadfast ability to secure resource-limited, investigation-demanding, and complex I-IoT environments. However, their effectiveness hinges not only on the model but also on the dataset on which they are trained. While numerous literature studies delve into this field, existing proposed models often grapple with challenges. They are frequently trained on outdated, non-diverse datasets or lack specific features crucial for I-IoT networks. Recent efforts, thankfully, introduce more adequate datasets like Edge-IIoTset. Researchers leverage this extensive dataset to train models, focusing on detecting the 14 sophisticated attacks. These attacks predominantly target real I-IoT networks. Despite these efforts, none of the existing models proves entirely efficient. A review of literature solutions reveals that many models cannot detect all 15 classes in the dataset. Some are multi-staged or overly complex. In response to these challenges, this paper presents an End-to-End learning , non-complex CNN1D model tailored to the specific problem of detecting 14 sophisticated threats targeting I-IoT environments. Our proposed model demonstrated remarkable efficiency with an accuracy of 99.96%, successfully detecting all 15 classes in the Edge-IIoTset dataset with a minimal loss of 0.0011. Not only that, but our model was validated with k-fold cross-validation, demonstrating its efficiency in preserving the same performance on unseen data and its ability to be generalized for real-world I-IoT environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
阿莫西林发布了新的文献求助10
2秒前
2秒前
SciGPT应助大面包采纳,获得10
4秒前
Moonber完成签到,获得积分10
5秒前
www完成签到,获得积分10
5秒前
5秒前
坚强的曼雁完成签到,获得积分10
6秒前
7秒前
王老师发布了新的文献求助10
7秒前
K先生完成签到,获得积分10
7秒前
阿莫西林完成签到,获得积分10
9秒前
代码小白完成签到,获得积分10
9秒前
莉丽完成签到,获得积分10
12秒前
gYang完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
17秒前
852应助青衫采纳,获得10
17秒前
大面包发布了新的文献求助10
17秒前
18秒前
graham1101发布了新的文献求助10
19秒前
凉小远完成签到,获得积分10
20秒前
依沫发布了新的文献求助10
20秒前
22秒前
wufeng发布了新的文献求助10
23秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
磕磕发布了新的文献求助10
25秒前
Liufgui应助橙果果采纳,获得20
25秒前
脑洞疼应助飞快的剑愁采纳,获得10
26秒前
科研通AI2S应助凉小远采纳,获得10
27秒前
科研通AI2S应助凉小远采纳,获得10
27秒前
29秒前
认真的雪完成签到,获得积分10
30秒前
Orange应助油菜的星星采纳,获得10
30秒前
31秒前
爱吃猫的鱼完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068