An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things

端到端原则 入侵检测系统 互联网 计算机科学 工业互联网 入侵 最终用户 计算机网络 物联网 计算机安全 万维网 地质学 地球化学
作者
Karima Hassini,Safae Khalis,Omar Habibi,Mohammed Chemmakha,Mohamed Lazaar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:294: 111785-111785 被引量:7
标识
DOI:10.1016/j.knosys.2024.111785
摘要

The Industrial-Internet of Things (I-IoT) stands out as one of the most dynamically evolving subfields within the expansive realm of the Internet of Things (IoT). Its exponential growth is reshaping industrial landscapes, bringing forth transformative innovations and advancements at an unprecedented pace, as the core of Industry 4.0. Among the formidable challenges faced by the Industrial-Internet of Things, cybersecurity stands out as a critical concern. Deep learning-based Intrusion Detection System (IDS) solutions showcase their steadfast ability to secure resource-limited, investigation-demanding, and complex I-IoT environments. However, their effectiveness hinges not only on the model but also on the dataset on which they are trained. While numerous literature studies delve into this field, existing proposed models often grapple with challenges. They are frequently trained on outdated, non-diverse datasets or lack specific features crucial for I-IoT networks. Recent efforts, thankfully, introduce more adequate datasets like Edge-IIoTset. Researchers leverage this extensive dataset to train models, focusing on detecting the 14 sophisticated attacks. These attacks predominantly target real I-IoT networks. Despite these efforts, none of the existing models proves entirely efficient. A review of literature solutions reveals that many models cannot detect all 15 classes in the dataset. Some are multi-staged or overly complex. In response to these challenges, this paper presents an End-to-End learning , non-complex CNN1D model tailored to the specific problem of detecting 14 sophisticated threats targeting I-IoT environments. Our proposed model demonstrated remarkable efficiency with an accuracy of 99.96%, successfully detecting all 15 classes in the Edge-IIoTset dataset with a minimal loss of 0.0011. Not only that, but our model was validated with k-fold cross-validation, demonstrating its efficiency in preserving the same performance on unseen data and its ability to be generalized for real-world I-IoT environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝意完成签到,获得积分0
21秒前
光亮若翠完成签到,获得积分10
21秒前
小美完成签到 ,获得积分10
23秒前
安安滴滴完成签到 ,获得积分10
25秒前
红茸茸羊完成签到 ,获得积分10
28秒前
满意人英完成签到,获得积分10
29秒前
xiaodong发布了新的文献求助10
37秒前
轩辕远航完成签到 ,获得积分10
40秒前
zz完成签到 ,获得积分10
42秒前
xiaodong完成签到,获得积分10
51秒前
杪夏二八完成签到 ,获得积分10
1分钟前
lesen完成签到,获得积分10
1分钟前
lemon完成签到 ,获得积分10
1分钟前
没用的三轮完成签到,获得积分10
1分钟前
研友_Z1eDgZ完成签到,获得积分10
1分钟前
终究是残念完成签到,获得积分10
1分钟前
Amy完成签到 ,获得积分10
1分钟前
面包完成签到 ,获得积分10
1分钟前
tianliyan完成签到 ,获得积分10
1分钟前
a46539749完成签到 ,获得积分10
2分钟前
执着晓亦完成签到 ,获得积分10
2分钟前
孙哈哈完成签到 ,获得积分10
2分钟前
善学以致用应助zjh采纳,获得10
3分钟前
缥缈映安完成签到 ,获得积分10
3分钟前
wlei完成签到,获得积分10
3分钟前
isedu完成签到,获得积分10
3分钟前
2024kyt完成签到 ,获得积分10
3分钟前
zjh发布了新的文献求助10
3分钟前
天天赚积分完成签到,获得积分0
3分钟前
zcydbttj2011完成签到 ,获得积分10
3分钟前
zjh完成签到,获得积分10
4分钟前
rafa完成签到 ,获得积分10
4分钟前
4分钟前
蛋妮完成签到 ,获得积分10
4分钟前
唯有一个心完成签到 ,获得积分10
4分钟前
loren313完成签到,获得积分0
4分钟前
铜豌豆完成签到 ,获得积分10
5分钟前
5分钟前
CUN完成签到,获得积分10
6分钟前
合适醉蝶完成签到 ,获得积分10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291547
求助须知:如何正确求助?哪些是违规求助? 2928027
关于积分的说明 8435109
捐赠科研通 2599859
什么是DOI,文献DOI怎么找? 1418806
科研通“疑难数据库(出版商)”最低求助积分说明 660150
邀请新用户注册赠送积分活动 642771