亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An end-to-end learning approach for enhancing intrusion detection in Industrial-Internet of Things

端到端原则 入侵检测系统 互联网 计算机科学 工业互联网 入侵 最终用户 计算机网络 物联网 计算机安全 万维网 地质学 地球化学
作者
Karima Hassini,Safae Khalis,Omar Habibi,Mohammed Chemmakha,Mohamed Lazaar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:294: 111785-111785 被引量:7
标识
DOI:10.1016/j.knosys.2024.111785
摘要

The Industrial-Internet of Things (I-IoT) stands out as one of the most dynamically evolving subfields within the expansive realm of the Internet of Things (IoT). Its exponential growth is reshaping industrial landscapes, bringing forth transformative innovations and advancements at an unprecedented pace, as the core of Industry 4.0. Among the formidable challenges faced by the Industrial-Internet of Things, cybersecurity stands out as a critical concern. Deep learning-based Intrusion Detection System (IDS) solutions showcase their steadfast ability to secure resource-limited, investigation-demanding, and complex I-IoT environments. However, their effectiveness hinges not only on the model but also on the dataset on which they are trained. While numerous literature studies delve into this field, existing proposed models often grapple with challenges. They are frequently trained on outdated, non-diverse datasets or lack specific features crucial for I-IoT networks. Recent efforts, thankfully, introduce more adequate datasets like Edge-IIoTset. Researchers leverage this extensive dataset to train models, focusing on detecting the 14 sophisticated attacks. These attacks predominantly target real I-IoT networks. Despite these efforts, none of the existing models proves entirely efficient. A review of literature solutions reveals that many models cannot detect all 15 classes in the dataset. Some are multi-staged or overly complex. In response to these challenges, this paper presents an End-to-End learning , non-complex CNN1D model tailored to the specific problem of detecting 14 sophisticated threats targeting I-IoT environments. Our proposed model demonstrated remarkable efficiency with an accuracy of 99.96%, successfully detecting all 15 classes in the Edge-IIoTset dataset with a minimal loss of 0.0011. Not only that, but our model was validated with k-fold cross-validation, demonstrating its efficiency in preserving the same performance on unseen data and its ability to be generalized for real-world I-IoT environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
兰兰不懒发布了新的文献求助10
13秒前
赘婿应助兰兰不懒采纳,获得10
25秒前
Magali发布了新的文献求助80
29秒前
玉灵子发布了新的文献求助10
57秒前
上官若男应助玉灵子采纳,获得10
1分钟前
无花果应助zizideng采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
zizideng发布了新的文献求助10
1分钟前
zizideng完成签到,获得积分10
1分钟前
h0jian09完成签到,获得积分10
2分钟前
爆米花应助zhangxiaoqing采纳,获得10
2分钟前
小二郎应助达西苏采纳,获得10
2分钟前
2分钟前
笑傲完成签到,获得积分10
3分钟前
3分钟前
3分钟前
zhangxiaoqing发布了新的文献求助10
3分钟前
3分钟前
达西苏发布了新的文献求助10
3分钟前
达西苏完成签到,获得积分10
3分钟前
激动的似狮完成签到,获得积分0
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小青椒应助霸气面包采纳,获得10
4分钟前
pups发布了新的文献求助10
4分钟前
4分钟前
wmm完成签到,获得积分10
4分钟前
Jasper应助pups采纳,获得20
5分钟前
Wei发布了新的文献求助20
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
不如看海完成签到 ,获得积分10
5分钟前
orixero应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI6应助信陵君无忌采纳,获得10
5分钟前
原子超人完成签到,获得积分10
6分钟前
wanci应助ma采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671275
求助须知:如何正确求助?哪些是违规求助? 4913655
关于积分的说明 15134379
捐赠科研通 4830066
什么是DOI,文献DOI怎么找? 2586738
邀请新用户注册赠送积分活动 1540332
关于科研通互助平台的介绍 1498523