A Hierarchical Multi-Action Deep Reinforcement Learning Method for Dynamic Distributed Job-Shop Scheduling Problem With Job Arrivals

计算机科学 强化学习 调度(生产过程) 作业车间调度 工作车间 分布式计算 动态优先级调度 流水车间调度 作业调度程序 工业工程 人工智能 运筹学 实时计算 数学优化 工程类 计算机网络 数学 布线(电子设计自动化) 服务质量 排队
作者
Jiang‐Ping Huang,Liang Gao,Xinyu Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tase.2024.3380644
摘要

The Distributed Job-shop Scheduling Problem (DJSP) is a significant issue in both academic and industrial fields. In real-world production, uncertain disturbances such as job arrivals are inevitable. In the paper, the DJSP with job arrivals is addressed with a Multi-action Deep Reinforcement Learning (MDRL) method. Firstly, a multi-action Markov Decision Process (MDP) is formulated, where a hierarchical multi-action space combining operation set and factory set is proposed. The reward function is related to the machine idle time. Additionally, the state transition is also elaborately designed, which includes four typical cases based on job arrival times. Then, a scheduling policy with two decision networks is proposed, where the Graph Neural Network (GNN) is applied to extract the intrinsic information of the scheduling scheme. A Proximal Policy Optimization (PPO) with two actor-critic frameworks is designed to train the model to achieve intelligent decision-making with hierarchical action selections. Extensive experiments are conducted based on 1350 instances. The comparison among 17 composite rules, 3 closely-rated DRL methods, and 2 metaheuristics has proven the outperformance of the proposed MDRL. The application of the MDRL in an automotive engine manufacturing company has demonstrated its engineering value in the industrial field. Note to Practitioners —The DJSP with job arrivals is a common challenge faced by equipment manufacturers, specifically in the electronic device manufacturing industry. These manufacturers are located in different areas and have varying facility configurations and operation trajectories. To address this challenge, a machine learning-based method can be applied for scheduling daily production tasks. This method divides the DJSP into two subproblems, namely job assigning and job sequencing, and uses two decision networks based on DRL to solve them. To address the uncertainty caused by job arrivals, the rescheduling process and the state update mechanism are carefully designed. A GNN is used for feature extraction at each decision point, and it feeds the decision networks with the extracted features to make the optimal selection. The proposed method has the ability of self-learning and self-adapting, and its effectiveness has been proven through experiments on 1350 test instances. Its practical application has been demonstrated in the production scenarios of an automotive engine manufacturing company. In the future, the method can be adopted to solve more complex distributed manufacturing problems that have constraints such as transportation costs and machine breakdowns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江竹兰完成签到,获得积分10
1秒前
1秒前
小火发布了新的文献求助30
2秒前
2秒前
CometShower发布了新的文献求助10
3秒前
heshuyao发布了新的文献求助10
3秒前
殷权威发布了新的文献求助10
3秒前
cebr完成签到,获得积分10
4秒前
4秒前
4秒前
ding应助Kate采纳,获得10
5秒前
江竹兰发布了新的文献求助10
5秒前
无辜的猎豹完成签到,获得积分10
5秒前
脊柱小白菜完成签到,获得积分10
6秒前
汉堡包应助zzzxiangyi采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
星辰大海应助kiki采纳,获得10
6秒前
parrowxg完成签到,获得积分10
7秒前
打打应助汪汪队采纳,获得10
7秒前
娜娜发布了新的文献求助10
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
姜艺童发布了新的文献求助10
9秒前
烟花应助THINKG采纳,获得10
9秒前
小易发布了新的文献求助10
10秒前
mm发布了新的文献求助10
10秒前
李微发布了新的文献求助50
10秒前
景凤灵发布了新的文献求助10
10秒前
10秒前
wangxinyu发布了新的文献求助10
11秒前
小火完成签到,获得积分20
11秒前
大米粒发布了新的文献求助10
11秒前
12秒前
干净的秋柳完成签到,获得积分10
12秒前
CometShower完成签到,获得积分10
12秒前
红茶发布了新的文献求助10
13秒前
13秒前
搜集达人应助LiuYinglong采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4992878
求助须知:如何正确求助?哪些是违规求助? 4240810
关于积分的说明 13212439
捐赠科研通 4036159
什么是DOI,文献DOI怎么找? 2208306
邀请新用户注册赠送积分活动 1219242
关于科研通互助平台的介绍 1137557