已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Hierarchical Multi-Action Deep Reinforcement Learning Method for Dynamic Distributed Job-Shop Scheduling Problem With Job Arrivals

计算机科学 强化学习 调度(生产过程) 作业车间调度 工作车间 分布式计算 动态优先级调度 流水车间调度 作业调度程序 工业工程 人工智能 运筹学 实时计算 数学优化 工程类 计算机网络 数学 布线(电子设计自动化) 服务质量 排队
作者
Jiang‐Ping Huang,Liang Gao,Xinyu Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tase.2024.3380644
摘要

The Distributed Job-shop Scheduling Problem (DJSP) is a significant issue in both academic and industrial fields. In real-world production, uncertain disturbances such as job arrivals are inevitable. In the paper, the DJSP with job arrivals is addressed with a Multi-action Deep Reinforcement Learning (MDRL) method. Firstly, a multi-action Markov Decision Process (MDP) is formulated, where a hierarchical multi-action space combining operation set and factory set is proposed. The reward function is related to the machine idle time. Additionally, the state transition is also elaborately designed, which includes four typical cases based on job arrival times. Then, a scheduling policy with two decision networks is proposed, where the Graph Neural Network (GNN) is applied to extract the intrinsic information of the scheduling scheme. A Proximal Policy Optimization (PPO) with two actor-critic frameworks is designed to train the model to achieve intelligent decision-making with hierarchical action selections. Extensive experiments are conducted based on 1350 instances. The comparison among 17 composite rules, 3 closely-rated DRL methods, and 2 metaheuristics has proven the outperformance of the proposed MDRL. The application of the MDRL in an automotive engine manufacturing company has demonstrated its engineering value in the industrial field. Note to Practitioners —The DJSP with job arrivals is a common challenge faced by equipment manufacturers, specifically in the electronic device manufacturing industry. These manufacturers are located in different areas and have varying facility configurations and operation trajectories. To address this challenge, a machine learning-based method can be applied for scheduling daily production tasks. This method divides the DJSP into two subproblems, namely job assigning and job sequencing, and uses two decision networks based on DRL to solve them. To address the uncertainty caused by job arrivals, the rescheduling process and the state update mechanism are carefully designed. A GNN is used for feature extraction at each decision point, and it feeds the decision networks with the extracted features to make the optimal selection. The proposed method has the ability of self-learning and self-adapting, and its effectiveness has been proven through experiments on 1350 test instances. Its practical application has been demonstrated in the production scenarios of an automotive engine manufacturing company. In the future, the method can be adopted to solve more complex distributed manufacturing problems that have constraints such as transportation costs and machine breakdowns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助球球采纳,获得10
2秒前
3秒前
你好完成签到,获得积分10
3秒前
mouxq发布了新的文献求助10
4秒前
李健的小迷弟应助ljc采纳,获得10
4秒前
5秒前
5秒前
Takahara2000完成签到,获得积分10
6秒前
7秒前
8秒前
hehsk发布了新的文献求助10
10秒前
Wsh发布了新的文献求助10
11秒前
11秒前
虎正凯完成签到 ,获得积分10
11秒前
11秒前
王晨旭发布了新的文献求助10
11秒前
猪猪花发布了新的文献求助10
13秒前
xixixixix发布了新的文献求助10
13秒前
我是老大应助张aa采纳,获得10
13秒前
天明完成签到,获得积分10
13秒前
千早爱音发布了新的文献求助100
14秒前
毛祺隆完成签到,获得积分10
15秒前
15秒前
16秒前
伏binglin发布了新的文献求助10
16秒前
wjq_wind关注了科研通微信公众号
16秒前
ymlllym发布了新的文献求助10
16秒前
Fly发布了新的文献求助10
17秒前
17秒前
17秒前
肖兰完成签到,获得积分10
18秒前
18秒前
思源应助苏诗兰采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
19秒前
elliotzzz应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443372
求助须知:如何正确求助?哪些是违规求助? 4553292
关于积分的说明 14241453
捐赠科研通 4474854
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443137
关于科研通互助平台的介绍 1418745