锂(药物)
离子
放松(心理学)
估计
电压
材料科学
电气工程
环境科学
计算机科学
工程物理
纳米技术
化学
核工程
工程类
心理学
系统工程
神经科学
有机化学
精神科
作者
Jiangong Zhu,Yixiu Wang,Yuan Huang,R. Bhushan Gopaluni,Yankai Cao,Michael Heere,Martin J. Mühlbauer,Liuda Mereacre,Haifeng Dai,Xinhua Liu,Anatoliy Senyshyn,Xuezhe Wei,Michael Knapp,Helmut Ehrenberg
出处
期刊:CERN European Organization for Nuclear Research - Zenodo
日期:2022-04-01
标识
DOI:10.5281/zenodo.6379165
摘要
Here are the datasets for the publication named "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation" published in Nature Communications. Experimental cycling data for three commercial 18650 type batteries (Dataset_1:NCA battery, Dataset_2:NCM battery, and Dataset_3:NCM+NCA_battery) are given, where each csv file corresponds to one cell cycling data. The cells are named as CYX-Y_Z-#N according to their cycling conditions. X means the temperature, Y_Z represents the charge_discharge current rate, #N is the cell tag. Each csv file has 9 columns, including cycle time ('time/s'), controlled voltage and current ('control/V/mA'), battery voltage ('Ecell/V'), applied current ('<I>/mA'), charge or discharge electricity ('Q discharge/mA.h' and 'Q discharge/mA.h'), controlled voltage or current ('control/V', 'control/mA' and ), and cycle number ('cycle number'). In the impedance data, one representative cell from each cycling condition is chosen for the discussion in the main text. More detailed descriptions can be found in the zip file.
科研通智能强力驱动
Strongly Powered by AbleSci AI