A Multi-Modal Classification Method for Early Diagnosis of Mild Cognitive Impairment and Alzheimer’s Disease Using Three Paradigms With Various Task Difficulties

认知障碍 任务(项目管理) 情态动词 疾病 计算机科学 阿尔茨海默病 认知 医学 人工智能 心理学 神经科学 病理 工程类 化学 高分子化学 系统工程
作者
Sheng Chen,Chutian Zhang,Hongjun Yang,Liang Peng,Haiqun Xie,Zeping Lv,Zeng‐Guang Hou
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:32: 1456-1465 被引量:9
标识
DOI:10.1109/tnsre.2024.3379891
摘要

Alzheimer's Disease (AD) accounts for the majority of dementia, and Mild Cognitive Impairment (MCI) is the early stage of AD. Early and accurate diagnosis of dementia plays a vital role in more targeted treatments and effectively halting disease progression. However, the clinical diagnosis of dementia requires various examinations, which are expensive and require a high level of expertise from the doctor. In this paper, we proposed a classification method based on multi-modal data including Electroencephalogram (EEG), eye tracking and behavioral data for early diagnosis of AD and MCI. Paradigms with various task difficulties were used to identify different severity of dementia: eye movement task and resting-state EEG tasks were used to detect AD, while eye movement task and delayed match-to-sample task were used to detect MCI. Besides, the effects of different features were compared and suitable EEG channels were selected for the detection. Furthermore, we proposed a data augmentation method to enlarge the dataset, designed an extra ERPNet feature extract layer to extract multi-modal features and used domain-adversarial neural network to improve the performance of MCI diagnosis. We achieved an average accuracy of 88.81% for MCI diagnosis and 100% for AD diagnosis. The results of this paper suggest that our classification method can provide a feasible and affordable way to diagnose dementia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
佳佳应助科研通管家采纳,获得10
刚刚
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
shisui应助科研通管家采纳,获得30
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
佳佳应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
斯文败类应助清爽的如娆采纳,获得10
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
完美世界应助一只小朋友采纳,获得10
1秒前
1秒前
佳佳应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
田様应助小鱼鱼采纳,获得10
1秒前
扬帆远航应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
6666应助科研通管家采纳,获得10
1秒前
1秒前
chagall60完成签到,获得积分10
1秒前
yiiiping应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
2秒前
yiiiping应助科研通管家采纳,获得10
2秒前
2秒前
李爱国应助王顺顺采纳,获得10
2秒前
2秒前
小马发布了新的文献求助10
2秒前
LBJ发布了新的文献求助10
3秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750756
求助须知:如何正确求助?哪些是违规求助? 5465712
关于积分的说明 15367939
捐赠科研通 4889850
什么是DOI,文献DOI怎么找? 2629420
邀请新用户注册赠送积分活动 1577683
关于科研通互助平台的介绍 1534066