A lightweight network for abdominal multi-organ segmentation based on multi-scale context fusion and dual self-attention

联营 棱锥(几何) 背景(考古学) 分割 计算机科学 人工智能 计算机视觉 模式识别(心理学) 数据挖掘 生物 光学 物理 古生物学
作者
Miao Liao,Hongliang Tang,Xiong Li,Pandi Vijayakumar,Varsha Arya,Brij B. Gupta
出处
期刊:Information Fusion [Elsevier]
卷期号:108: 102401-102401 被引量:7
标识
DOI:10.1016/j.inffus.2024.102401
摘要

Segmenting the organs from abdominal CT images is a vital procedure for computer-aided diagnosis and treatment. Accurate and simultaneous segmentation of multiple abdominal organs remains challenging due to the complex structures, varying sizes, and fuzzy boundaries. Currently, most methods aiming at improving segmentation accuracy involve either deepening the network or employing large-scale models, which results in a heavy computation burden and a huge number of model parameters. It is difficult to deploy these methods in a medical environment. In this paper, we present a lightweight network based on multi-scale context fusion and dual self-attention. The dual self-attention mechanism is used to obtain target organ responses from channel domain, while also strengthening the correlation of global information from spatial domain. Considering the complex structure of abdominal organs, we design a multi-scale context fusion module comprised of a pyramid pooling (PP) and an anisotropic strip pooling (ASP). The PP is used to acquire rich local features by aggregating context information from different receptive fields, while the ASP is proposed to extract strip features in different directions to help the network establish long-distance dependencies and capture the characteristics of elongated organs, such as pancreas and spleen. Moreover, a residual module is designed in the skip connection to learn features related to edges and small objects. The proposed method achieves averaged Dice of 90.1% and 82.5% on the FLARE and BTCV datasets, respectively, with only 6.25M model parameters and 21.40G FLOPs, outperforming many state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助害羞的纸鹤采纳,获得10
1秒前
ddd完成签到,获得积分10
2秒前
李健的小迷弟应助xuan采纳,获得10
3秒前
英姑应助look采纳,获得10
3秒前
4秒前
细腻白柏完成签到,获得积分10
4秒前
zyb发布了新的文献求助10
4秒前
7秒前
面包会有的完成签到,获得积分10
9秒前
10秒前
10秒前
宜一完成签到 ,获得积分10
11秒前
12秒前
wanz完成签到,获得积分20
12秒前
梁嘉琪发布了新的文献求助10
12秒前
13秒前
15秒前
科研小民工应助Cassiel采纳,获得30
15秒前
小灰狼发布了新的文献求助10
15秒前
哦啦啦发布了新的文献求助10
15秒前
洛锋灵发布了新的文献求助10
16秒前
思源应助润润轩轩采纳,获得10
18秒前
科研通AI5应助汤姆采纳,获得30
18秒前
18秒前
19秒前
20秒前
人生苦短完成签到,获得积分10
21秒前
华仔应助认真的映安采纳,获得10
21秒前
爆米花应助森气采纳,获得10
21秒前
22秒前
22秒前
科研通AI2S应助巫马尔槐采纳,获得10
23秒前
Luffa完成签到,获得积分10
24秒前
勤恳的鲂发布了新的文献求助10
25秒前
Kloria关注了科研通微信公众号
25秒前
汤汤发布了新的文献求助10
25秒前
27秒前
27秒前
彭于晏应助flywolfg采纳,获得10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526093
求助须知:如何正确求助?哪些是违规求助? 3106509
关于积分的说明 9280568
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539235
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709478