An improvement of the Revised Wind Erosion Equation by considering the effect of non-photosynthetic vegetation

归一化差异植被指数 环境科学 腐蚀 风积作用 植被(病理学) 水文学(农业) 风速 气象学 大气科学 地质学 气候变化 地理 岩土工程 地貌学 海洋学 病理 医学
作者
Xiufan Liu,Heqiang Du,Xinlei Liu,Yawei Fan,Sen Li,Tao Wang,Zichen Guo
出处
期刊:Geoderma [Elsevier]
卷期号:445: 116880-116880 被引量:13
标识
DOI:10.1016/j.geoderma.2024.116880
摘要

Non-photosynthetic vegetation (NPV) can significantly impact the magnitude of wind erosion. However, most wind erosion models did not take NPV into account, which led to large uncertainties in wind erosion simulation. To reduce these uncertainties, the effects of NPV on wind erosion should be considered in wind erosion simulations. Herein, we collected the hyperspectral and fractional coverage (fNPV) data of NPV from the Mu Us Sandy Land (MUSL). Through constructing a model between the normalized difference tillage index (NDTI) and fNPV, the fNPV values in the MUSL from 2014 to 2017 were estimated by Landsat 8-OLI images and were used to improve the combined vegetation factor (COG) in the Revised Wind Erosion Equation (RWEQ) model to improve this model. Then, the improved RWEQ model was employed to simulate the wind erosion process of the MUSL during these years. The results showed that the mean values of the fNPV in the MUSL from 2014 to 2017 were approximately 2.71 times higher than those estimated by NDVI data (MOD13Q1). The improved RWEQ that considering the NPV significantly improved the precision of the simulation results, as validated by measured data. Compared with the wind erosion modulus (WEM) without NPV, the decreased values caused by NPV were 130.48 t/km2/a (annum), 91.79 t/km2/a, 85.51 t/km2/a and 93.76 t/km2/a from 2014 to 2017, respectively, and the rates of decrease in wind erosion in the corresponding year were 26.52 %, 16.9 %, 21.47 % and 31.33 %, respectively. We believe that integrating NPV monitoring technology into wind erosion models could significantly improve the accuracy of wind erosion simulation, and this study provides new insight into wind erosion modelling, which would be of interest to scholars in the fields of wind erosion and dust emission.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二十而耳顺完成签到,获得积分10
刚刚
香蕉半邪发布了新的文献求助10
刚刚
1秒前
独特的凡蕾完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
孤独的明雪完成签到,获得积分10
5秒前
默默善愁完成签到,获得积分10
5秒前
6秒前
花花发布了新的文献求助10
7秒前
年年年年发布了新的文献求助10
7秒前
9秒前
9秒前
9秒前
一支菜馅儿馄饨完成签到,获得积分10
11秒前
垃圾智造者完成签到,获得积分10
11秒前
12秒前
酷波er应助张张采纳,获得10
13秒前
量子星尘发布了新的文献求助30
13秒前
Tang完成签到,获得积分10
14秒前
15秒前
老实幻姬发布了新的文献求助10
15秒前
15秒前
zxxxx发布了新的文献求助10
16秒前
叽里呱啦完成签到 ,获得积分10
16秒前
yyjdtc完成签到,获得积分10
17秒前
蓝华完成签到 ,获得积分10
17秒前
yrj完成签到 ,获得积分10
17秒前
聪慧咖啡豆完成签到,获得积分10
17秒前
Leticia发布了新的文献求助10
18秒前
情怀应助香蕉半邪采纳,获得10
18秒前
微风完成签到,获得积分10
19秒前
Lee发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
多吃青菜完成签到,获得积分10
20秒前
PhDLi完成签到,获得积分10
20秒前
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717929
求助须知:如何正确求助?哪些是违规求助? 5249249
关于积分的说明 15283791
捐赠科研通 4867991
什么是DOI,文献DOI怎么找? 2614002
邀请新用户注册赠送积分活动 1563914
关于科研通互助平台的介绍 1521377