物理
唤醒
流入
机械
统计物理学
航空航天工程
气象学
工程类
作者
Shuai Han,Shuai Han,Shuai Han,Shuai Han,Fan Wang,Fan Wang,Fan Wang,Jie Zhang,Jie Zhang,Jie Zhang
摘要
In the current study, the impact of various inflow conditions, including turbulent wind profiles and turbulent intensity, on the wake flow topology of a simplified ground transportation system (GTS) model was investigated using the improved delayed detached eddy simulation. The reliability and accuracy of the numerical method adopted in this paper were verified against the results comprising the aerodynamic drag and the wake flow structure of the GTS model obtained from the large eddy simulation and the experimental data. The research results indicate that turbulent winds characterized by logarithmic and uniform velocity profiles resulted in significantly different wake flow topologies yet exhibit the same dominant frequency. The turbulent intensity also plays a crucial role in the wake of the GTS model. It is observed that an increase in turbulence intensity corresponds with a rise in the aerodynamic drag. Specifically, when the turbulence intensity is set at 15%, there is a 3.68% increase in the aerodynamic drag of the GTS model compared to a case where the turbulence intensity was only 5%. In addition, the turbulent intensity is critical to the dominant frequency characteristics of the wake region of the GTS model. These results demonstrate that both the velocity profiles and the turbulence intensities significantly influence the wake flow topology and aerodynamic drag of the GTS model, providing a valuable reference for establishing appropriate inflow conditions and exploring the formation mechanism of flow topology in the wake of the GTS model.
科研通智能强力驱动
Strongly Powered by AbleSci AI