MAE-EEG-Transformer: A transformer-based approach combining masked autoencoder and cross-individual data augmentation pre-training for EEG classification

自编码 脑电图 变压器 计算机科学 人工智能 模式识别(心理学) 语音识别 训练集 机器学习 心理学 人工神经网络 工程类 神经科学 电气工程 电压
作者
Miao Cai,Yu Zeng
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106131-106131 被引量:3
标识
DOI:10.1016/j.bspc.2024.106131
摘要

Convolutional neural networks (CNN) may not be ideal for extracting global temporal features from non-stationary Electroencephalogram (EEG) signals. The application of the masking-based method in EEG classification is not well studied, and there is a shortage of commonly accepted models for verifying inter-individual results in motor imagery classification tasks. The MAE-EEG-Transformer, a transformer with masking mechanism, is proposed in this article. It pre-trains by randomly masking signals and forces the model to learn semantic features. The pre-trained encoder module is fine-tuned and moved to the classification task to obtain the category of EEG signals. The effectiveness of features with and without pre-training is compared using t-SNE visualization to demonstrate pre-training's inter-subject efficacy. The MAE EEG Transformer was extensively evaluated across three prevalent datasets in EEG-based motor imagery, demonstrating performance comparable to state-of-the-art models while requiring only approximately 20% of the computational cost (results in Table 1, 2, 3 and 4).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直天佑完成签到,获得积分10
1秒前
jiejie321完成签到,获得积分10
1秒前
学术白银完成签到 ,获得积分10
3秒前
3秒前
Gcy丶完成签到,获得积分10
6秒前
研友_LwlAgn完成签到,获得积分10
6秒前
Ava应助杨婷姗采纳,获得10
7秒前
8秒前
10秒前
evelyn完成签到 ,获得积分10
10秒前
谦让代芙完成签到,获得积分10
11秒前
11秒前
tianhualefei发布了新的文献求助10
12秒前
12秒前
12秒前
la完成签到,获得积分10
12秒前
cckk发布了新的文献求助10
12秒前
白藤总是一坨肉完成签到 ,获得积分10
13秒前
传奇3应助Gcy丶采纳,获得10
13秒前
14秒前
Willwzh完成签到,获得积分10
14秒前
萌酱发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
大个应助fuchao采纳,获得10
18秒前
19秒前
20秒前
xuan完成签到 ,获得积分10
20秒前
Curry完成签到 ,获得积分10
20秒前
scgfren发布了新的文献求助10
20秒前
22秒前
cckk完成签到,获得积分10
22秒前
AAA专业叉车完成签到,获得积分10
22秒前
在水一方应助遇见采纳,获得10
23秒前
23秒前
23秒前
跳跃的太君完成签到,获得积分10
23秒前
24秒前
One发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124