Artificial Intelligence in Hand Surgery – How Generative AI is Transforming the Hand Surgery Landscape

生成语法 医疗保健 人工智能应用 人工智能 心理学 计算机科学 政治学 法学
作者
Ruth En Si Tan,Wendy Z. W. Teo,Mark E. Puhaindran
出处
期刊:The journal of hand surgery [World Scientific]
卷期号:29 (02): 81-87 被引量:6
标识
DOI:10.1142/s2424835524300019
摘要

Artificial intelligence (AI) has witnessed significant advancements, reshaping various industries, including healthcare. The introduction of ChatGPT by OpenAI in November 2022 marked a pivotal moment, showcasing the potential of generative AI in revolutionising patient care, diagnosis and treatment. Generative AI, unlike traditional AI systems, possesses the ability to generate new content by understanding patterns within datasets. This article explores the evolution of AI in healthcare, tracing its roots to the term coined by John McCarthy in 1955 and the contributions of pioneers like John Von Neumann and Alan Turing. Currently, generative AI, particularly Large Language Models, holds promise across three broad categories in healthcare: patient care, education and research. In patient care, it offers solutions in clinical document management, diagnostic support and operative planning. Notable advancements include Microsoft’s collaboration with Epic for integrating AI into electronic medical records (EMRs), enhancing clinical data management and patient care. Furthermore, generative AI aids in surgical decision-making, as demonstrated in plastic, orthopaedic and hepatobiliary surgeries. However, challenges such as bias, hallucination and integration with EMR systems necessitate caution and ongoing evaluation. The article also presents insights from the implementation of NUHS Russell-GPT, a generative AI chatbot, in a hand surgery department, showcasing its utility in administrative tasks but highlighting challenges in surgical planning and EMR integration. The survey showed unanimous support for incorporating AI into clinical settings, with all respondents being open to its use. In conclusion, generative AI is poised to enhance patient care and ease physician workloads, starting with automating administrative tasks and evolving to inform diagnoses, tailored treatment plans, as well as aid in surgical planning. As healthcare systems navigate the complexities of integrating AI, the potential benefits for both physicians and patients remain significant, offering a glimpse into a future where AI transforms healthcare delivery. Level of Evidence: Level V (Diagnostic)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
露噜噜完成签到,获得积分10
1秒前
佳期发布了新的文献求助10
1秒前
小鱼完成签到 ,获得积分10
1秒前
章如豹发布了新的文献求助10
2秒前
2秒前
叶子发布了新的文献求助10
2秒前
想飞的猪发布了新的文献求助10
3秒前
凪白发布了新的文献求助10
3秒前
坚定芷烟完成签到,获得积分10
3秒前
黑暗系发布了新的文献求助10
3秒前
3秒前
4秒前
A0完成签到,获得积分10
4秒前
科研通AI5应助nixx采纳,获得10
5秒前
老姚完成签到,获得积分10
5秒前
AME发布了新的文献求助10
5秒前
科研通AI5应助itszoefff采纳,获得10
5秒前
白小白完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
眼睛大傲之完成签到,获得积分10
7秒前
平常康发布了新的文献求助10
8秒前
上官若男应助凪白采纳,获得10
8秒前
FashionBoy应助longtengfei采纳,获得10
9秒前
Owen应助pinghu采纳,获得10
9秒前
9秒前
9秒前
A0发布了新的文献求助30
10秒前
10秒前
科研通AI5应助好运来采纳,获得10
10秒前
10秒前
11秒前
Hello应助lingVing瑜采纳,获得10
11秒前
热情香芦发布了新的文献求助30
12秒前
wanci应助十米采纳,获得10
12秒前
徐rl发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543314
求助须知:如何正确求助?哪些是违规求助? 3120695
关于积分的说明 9343843
捐赠科研通 2818781
什么是DOI,文献DOI怎么找? 1549765
邀请新用户注册赠送积分活动 722233
科研通“疑难数据库(出版商)”最低求助积分说明 713090