材料科学
光异构化
聚合物
荧光
光漂白
纳米技术
光致聚合物
红移
光化学
光电子学
光学
复合材料
有机化学
物理
聚合
异构化
化学
量子力学
银河系
催化作用
作者
Yu Dong,Huacan Wu,Jie Liu,Shiya Zheng,Baoshuai Liang,Chuang Zhang,Yao Ling,Xiaosong Wu,Jiamao Chen,Xiao‐Lan Yu,Shiyu Feng,Weiguo Huang
标识
DOI:10.1002/adma.202401294
摘要
Abstract Conventional security inks, generally directly printed on the data page surface, are vulnerable to counterfeiters, thereby raising the risk of chemical structural deciphering. In fact, polymer film‐based data pages with customized patterns embedded within polymer matrix, rather than printed on the surface, emerge as a promising solution. Therefore, the key lies in developing fluorophores offering light dose‐controlled fluorescent color inside polymer matrices. Though conventional fluorophores often suffer from photobleaching and uncontrolled photoreactions, disqualifying them for this purpose. Herein a diphenanthridinylfumaronitrile‐based phototransformers ( trans ‐D5) that undergoes photoisomerization and subsequent photocyclization during photopolymerization of the precursor, successively producing cis ‐ and cyclo ‐D5 with stepwise redshifted solid‐state emissions is developed. The resulting cyclo ‐D5 exhibits up to 172 nm emission redshift in rigidifying polymer matrices, while trans ‐D5 experiences a slightly blueshifted emission (≈28 nm), cis ‐D5 undergoes a modest redshift (≈14 nm). The markedly different rigidochromic behaviors of three D5 molecules within polymer matrices enable multicolor photochemical printing with a broad hue ranging from 38 to 10 via an anticlockwise direction in Munsell color space, yielding indecipherable fluorescent patterns in polymer films. This work provides a new method for document protection and implements advanced security features that are unattainable with conventional inks.
科研通智能强力驱动
Strongly Powered by AbleSci AI