Environmental Impacts of Rice Intensification Using High-Yielding Varieties: Evidence from Mazandaran, Iran

农业 生产力 公顷 产量(工程) 过度开采 业务 农业科学 地理 农业经济学 环境科学 经济 生物 经济增长 生态学 材料科学 考古 冶金
作者
Oriana Gava,Zahra Ardakani,Adela Delalić,Stefano Monaco
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (6): 2563-2563 被引量:1
标识
DOI:10.3390/su16062563
摘要

This article aims to show the potential contribution of high-yielding rice varieties to achieve sustainable intensification in paddy farming, by focusing on a developing country. A comparative life cycle assessment of traditional vs. high-yielding varieties is carried out by comparing the area-based and yield-based results. Primary data are collected through a farm survey (49 farms in the Mazandaran province, Iran; spring 2018). The results highlight that high-yielding varieties can reduce the yield-scaled impacts. However, area-scaled impacts are subject to increase for most impact categories. Statistically significant trade-offs involve global warming potential (+13% per ha and −28% per t in high-yielding varieties) and fossil resource depletion (+15% per ha and −26% per t in high-yielding varieties). Pesticide management is the most alarming practice. High-yielding varieties increase pesticide consumption and related toxicity impacts both per t and per ha. This study is a new contribution to the literature by improving and broadening the mainstream productivity perspective of current life cycle assessment research about crop varieties. The lessons learnt from this study suggest that the trade-offs between yield-scaled and area-scaled impacts should be carefully considered by decision-makers and policymakers, especially in developing countries that, like Iran, are affected by the overexploitation of natural resources. Targeted policy and the development of farmer education and advisory services are needed to create the enabling conditions for farm management changes, including conscious use of production inputs while avoiding heuristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
Huck完成签到,获得积分10
2秒前
毛豆应助迷路中的骑手采纳,获得10
3秒前
星辰大海应助zxh采纳,获得10
3秒前
4秒前
桃井尤川完成签到,获得积分10
4秒前
娃哈哈完成签到,获得积分20
4秒前
orixero应助周zhou采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
坦率的寻菱完成签到,获得积分10
7秒前
Tingshan发布了新的文献求助20
7秒前
活力听兰发布了新的文献求助10
8秒前
Orange应助cst采纳,获得10
8秒前
9秒前
Ava应助Suki采纳,获得10
10秒前
zbd发布了新的文献求助10
10秒前
小灰灰发布了新的文献求助10
11秒前
11秒前
11秒前
琳琳发布了新的文献求助10
11秒前
科研通AI5应助lotus777采纳,获得10
12秒前
12秒前
13秒前
13秒前
Nanana发布了新的文献求助10
14秒前
Hideyuki发布了新的文献求助10
14秒前
顾矜应助江峰采纳,获得10
14秒前
lucky完成签到 ,获得积分10
15秒前
15秒前
火星上的菲鹰应助玛奇朵采纳,获得10
16秒前
16秒前
JamesPei应助长情胡萝卜采纳,获得30
17秒前
17秒前
dzc完成签到,获得积分20
17秒前
烦烦发布了新的文献求助20
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3568961
求助须知:如何正确求助?哪些是违规求助? 3140459
关于积分的说明 9437519
捐赠科研通 2841397
什么是DOI,文献DOI怎么找? 1561669
邀请新用户注册赠送积分活动 730570
科研通“疑难数据库(出版商)”最低求助积分说明 718144