Frontiers: News Event-Driven Forecasting of Commodity Prices

商品 事件(粒子物理) 事件研究 经济 业务 金融经济学 财务 量子力学 生物 物理 古生物学 背景(考古学)
作者
Supriya Chakraborty,Srikanth Jagabathula,Lakshminarayanan Subramanian,Ashwin Venkataraman
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2022.0641
摘要

Problem definition: Commodity prices have exhibited significant volatility in recent times, which poses an exogenous risk factor for commodity-processing and commodity-trading firms. Accurate commodity price forecasts can help firms leverage data-driven procurement policies that incorporate the underlying price volatility for financial and operational hedging decisions. However, historical prices alone are insufficient to obtain reasonable forecasts because of the extreme volatility. Methodology/results: Building on the hypothesis that commodity prices are driven by real-world events, we propose a method that automatically extracts events from news articles and combines them with price data using a neural network-based predictive model to forecast prices. In addition to achieving a high prediction accuracy that outperforms several benchmarks (by up to 13%), our proposed model is also interpretable, which allows us to identify meaningful events driving the price fluctuations. We found that the events frequently associated with major fluctuations in the price include “natural,” “hike,” “policy,” and “elections,” all of which are known drivers of price change. We used a corpus containing about 1.6 million news articles of a major Indian newspaper spanning 15 years and daily prices of four crops (onion, potato, rice, and wheat) in India to perform this study. Our proposed approach is flexible and can be used to predict other time series data, such as disease incidence levels or macroeconomic indicators, that are also influenced by real-world events. Managerial implications: Firms can leverage price forecasts from our system to design inventory and procurement policies in the face of uncertain commodity prices. Commodity merchants can also use the forecasts to design optimal storage policies for physical trading of commodities when prices are volatile. Our findings can also significantly impact policymakers, who can leverage the information of impending price changes and associated events to mitigate the negative effects of price shocks. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0641 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心的初露完成签到,获得积分10
刚刚
lyb完成签到 ,获得积分10
2秒前
风中方盒完成签到,获得积分20
2秒前
布丁圆团完成签到,获得积分10
3秒前
yikeshu完成签到,获得积分10
3秒前
Zoe完成签到 ,获得积分10
4秒前
6秒前
星辰大海应助do0采纳,获得10
7秒前
tt完成签到 ,获得积分10
8秒前
浅辰完成签到,获得积分10
9秒前
大气萤完成签到,获得积分20
10秒前
10秒前
我ppp完成签到 ,获得积分10
10秒前
11秒前
易燃物品完成签到,获得积分10
11秒前
Hello应助Ther采纳,获得10
13秒前
CherylZhao完成签到,获得积分10
14秒前
Galato发布了新的文献求助10
15秒前
颜愫完成签到,获得积分10
15秒前
安详向日葵完成签到 ,获得积分10
16秒前
拼搏的白云完成签到,获得积分10
16秒前
852应助hhh采纳,获得10
16秒前
李白白白完成签到,获得积分10
16秒前
王手完成签到,获得积分10
16秒前
17秒前
一人完成签到,获得积分10
18秒前
do0完成签到,获得积分10
19秒前
yar应助xlz110采纳,获得10
19秒前
NexusExplorer应助落寞凌波采纳,获得10
21秒前
量子星尘发布了新的文献求助10
24秒前
123完成签到 ,获得积分10
24秒前
哈哈呵完成签到,获得积分10
24秒前
24秒前
Rylee完成签到,获得积分10
24秒前
Jiro完成签到,获得积分10
26秒前
我ppp发布了新的文献求助60
27秒前
28秒前
纳米酶催化完成签到,获得积分10
29秒前
29秒前
John完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029