Frontiers: News Event-Driven Forecasting of Commodity Prices

商品 事件(粒子物理) 事件研究 经济 业务 金融经济学 财务 古生物学 背景(考古学) 物理 量子力学 生物
作者
Supriya Chakraborty,Srikanth Jagabathula,Lakshminarayanan Subramanian,Ashwin Venkataraman
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2022.0641
摘要

Problem definition: Commodity prices have exhibited significant volatility in recent times, which poses an exogenous risk factor for commodity-processing and commodity-trading firms. Accurate commodity price forecasts can help firms leverage data-driven procurement policies that incorporate the underlying price volatility for financial and operational hedging decisions. However, historical prices alone are insufficient to obtain reasonable forecasts because of the extreme volatility. Methodology/results: Building on the hypothesis that commodity prices are driven by real-world events, we propose a method that automatically extracts events from news articles and combines them with price data using a neural network-based predictive model to forecast prices. In addition to achieving a high prediction accuracy that outperforms several benchmarks (by up to 13%), our proposed model is also interpretable, which allows us to identify meaningful events driving the price fluctuations. We found that the events frequently associated with major fluctuations in the price include “natural,” “hike,” “policy,” and “elections,” all of which are known drivers of price change. We used a corpus containing about 1.6 million news articles of a major Indian newspaper spanning 15 years and daily prices of four crops (onion, potato, rice, and wheat) in India to perform this study. Our proposed approach is flexible and can be used to predict other time series data, such as disease incidence levels or macroeconomic indicators, that are also influenced by real-world events. Managerial implications: Firms can leverage price forecasts from our system to design inventory and procurement policies in the face of uncertain commodity prices. Commodity merchants can also use the forecasts to design optimal storage policies for physical trading of commodities when prices are volatile. Our findings can also significantly impact policymakers, who can leverage the information of impending price changes and associated events to mitigate the negative effects of price shocks. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0641 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
可乐SAMA完成签到,获得积分10
1秒前
niu完成签到,获得积分10
1秒前
Garry完成签到,获得积分10
1秒前
yutang完成签到 ,获得积分10
2秒前
dakdake大可完成签到,获得积分10
2秒前
三个哈卡完成签到,获得积分10
3秒前
ccccchen完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
羊皮大哈发布了新的文献求助10
6秒前
健壮的芹菜完成签到,获得积分20
6秒前
7秒前
沉静的红酒完成签到,获得积分10
7秒前
乌兰巴托没有海完成签到,获得积分10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
马大翔应助科研通管家采纳,获得10
7秒前
7秒前
文艺的冬卉完成签到,获得积分20
8秒前
莓烦恼完成签到 ,获得积分10
9秒前
从容雨筠完成签到,获得积分10
9秒前
111966完成签到,获得积分10
9秒前
Noldor应助微微采纳,获得10
9秒前
静静完成签到,获得积分10
9秒前
xpd发布了新的文献求助30
10秒前
yi发布了新的文献求助10
10秒前
云ch完成签到,获得积分10
11秒前
Lucas应助simple采纳,获得10
12秒前
英勇的小强完成签到,获得积分10
13秒前
xfwang发布了新的文献求助10
14秒前
易子完成签到 ,获得积分10
14秒前
HUSHIYI完成签到,获得积分10
14秒前
huco完成签到,获得积分10
14秒前
HonestLiang完成签到,获得积分10
15秒前
失眠的安卉完成签到,获得积分10
15秒前
蜉蝣完成签到 ,获得积分10
16秒前
黑色的白鲸完成签到,获得积分10
16秒前
皮皮发布了新的文献求助10
16秒前
guoguo完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146969
求助须知:如何正确求助?哪些是违规求助? 2798255
关于积分的说明 7827373
捐赠科研通 2454823
什么是DOI,文献DOI怎么找? 1306491
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565