已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Frontiers: News Event-Driven Forecasting of Commodity Prices

商品 事件(粒子物理) 事件研究 经济 业务 金融经济学 财务 古生物学 背景(考古学) 物理 量子力学 生物
作者
Supriya Chakraborty,Srikanth Jagabathula,Lakshminarayanan Subramanian,Ashwin Venkataraman
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2022.0641
摘要

Problem definition: Commodity prices have exhibited significant volatility in recent times, which poses an exogenous risk factor for commodity-processing and commodity-trading firms. Accurate commodity price forecasts can help firms leverage data-driven procurement policies that incorporate the underlying price volatility for financial and operational hedging decisions. However, historical prices alone are insufficient to obtain reasonable forecasts because of the extreme volatility. Methodology/results: Building on the hypothesis that commodity prices are driven by real-world events, we propose a method that automatically extracts events from news articles and combines them with price data using a neural network-based predictive model to forecast prices. In addition to achieving a high prediction accuracy that outperforms several benchmarks (by up to 13%), our proposed model is also interpretable, which allows us to identify meaningful events driving the price fluctuations. We found that the events frequently associated with major fluctuations in the price include “natural,” “hike,” “policy,” and “elections,” all of which are known drivers of price change. We used a corpus containing about 1.6 million news articles of a major Indian newspaper spanning 15 years and daily prices of four crops (onion, potato, rice, and wheat) in India to perform this study. Our proposed approach is flexible and can be used to predict other time series data, such as disease incidence levels or macroeconomic indicators, that are also influenced by real-world events. Managerial implications: Firms can leverage price forecasts from our system to design inventory and procurement policies in the face of uncertain commodity prices. Commodity merchants can also use the forecasts to design optimal storage policies for physical trading of commodities when prices are volatile. Our findings can also significantly impact policymakers, who can leverage the information of impending price changes and associated events to mitigate the negative effects of price shocks. History: This paper has been accepted in the Manufacturing & Service Operations Management Frontiers in Operations Initiative. Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2022.0641 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣蜩十三完成签到,获得积分10
刚刚
西格完成签到 ,获得积分10
1秒前
hhhhhhhhhh完成签到 ,获得积分10
1秒前
everlasting完成签到,获得积分10
1秒前
我爱康康文献完成签到 ,获得积分10
2秒前
chnz3636发布了新的文献求助10
3秒前
Orange应助小元采纳,获得10
8秒前
搜集达人应助熊大采纳,获得10
8秒前
Lin完成签到 ,获得积分10
9秒前
Orange应助milv5采纳,获得10
13秒前
13秒前
terry完成签到,获得积分10
15秒前
壳子刘完成签到 ,获得积分10
15秒前
20秒前
20秒前
曲珍完成签到,获得积分10
20秒前
Rick发布了新的文献求助10
23秒前
23秒前
谨慎飞丹完成签到 ,获得积分10
24秒前
milv5发布了新的文献求助10
26秒前
阿司匹林完成签到 ,获得积分10
27秒前
27秒前
古铜完成签到 ,获得积分10
28秒前
wovy发布了新的文献求助10
32秒前
32秒前
大画家完成签到 ,获得积分10
32秒前
星辰大海应助小罗咩咩采纳,获得10
33秒前
hyl-tcm完成签到 ,获得积分10
34秒前
35秒前
风里有声音完成签到 ,获得积分10
35秒前
伶俐芷珊完成签到,获得积分10
36秒前
38秒前
38秒前
HH完成签到 ,获得积分10
39秒前
超帅慕晴完成签到,获得积分10
40秒前
牛蛙丶丶完成签到,获得积分10
40秒前
42秒前
小元发布了新的文献求助10
43秒前
别找了睡觉吧完成签到 ,获得积分10
45秒前
高高菠萝完成签到 ,获得积分10
45秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674205
求助须知:如何正确求助?哪些是违规求助? 3229618
关于积分的说明 9786440
捐赠科研通 2940150
什么是DOI,文献DOI怎么找? 1611710
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352