Structural design in reduced graphene oxide (RGO) metacomposites for enhanced microwave absorption in wide temperature spectrum

石墨烯 超材料 氧化物 微波食品加热 阻抗匹配 材料科学 电磁辐射 吸收(声学) 带宽(计算) 电阻抗 纳米技术 超材料吸收剂 光电子学 光学 复合材料 电气工程 物理 电信 计算机科学 可调谐超材料 冶金 工程类
作者
Haoxu Si,Yi Zhang,Yuhao Liu,Zhiyang Jiang,Cuiping Li,Jingwei Zhang,Xiaoxiao Huang,Chunhong Gong
出处
期刊:Journal of Materials Science & Technology [Elsevier]
卷期号:206: 211-220 被引量:28
标识
DOI:10.1016/j.jmst.2024.04.011
摘要

High-temperature microwave absorbing materials (MAMs) and structures are increasingly appealing due to their critical role in stealth applications under harsh environments. However, the impedance mismatch caused by increased conduction loss often leads to a significant decline in electromagnetic wave absorption (EMWA) performance at elevated temperatures, which severely restricts their practical application. In this study, we propose a novel approach for efficient electromagnetic wave absorption across a wide temperature range using reduced graphene oxide (RGO)/epoxy resin (EP) metacomposites that integrate both electromagnetic parameters and metamaterial design concepts. Due to the discrete distribution of the units, electromagnetic waves can more easily penetrate the interior of materials, thereby exhibiting stable microwave absorption (MA) performance and impedance-matching characteristics suitable across a wide temperature range. Consequently, exceptional MA properties can be achieved within the temperature range from 298 to 473 K. Furthermore, by carefully controlling the structural parameters in RGO metacomposites, both the resonant frequency and effective absorption bandwidth (EAB) can be optimized based on precise manipulation of equivalent electromagnetic parameters. This study not only provides an effective approach for the rational design of MA performance but also offers novel insights into achieving super metamaterials with outstanding performance across a wide temperature spectrum.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nn发布了新的文献求助10
刚刚
manan发布了新的文献求助10
刚刚
刚刚
刚刚
落落发布了新的文献求助10
刚刚
ssss完成签到,获得积分10
1秒前
余红发布了新的文献求助10
1秒前
jackcy完成签到 ,获得积分10
1秒前
成都完成签到,获得积分20
1秒前
2秒前
wjh发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
整齐的白筠完成签到,获得积分10
3秒前
WWWUBING完成签到,获得积分10
4秒前
小文发布了新的文献求助10
4秒前
MJQ发布了新的文献求助10
4秒前
4秒前
春夏秋冬发布了新的文献求助10
5秒前
5秒前
5秒前
李健的小迷弟应助nn采纳,获得10
5秒前
彭于晏应助sunzhiyu233采纳,获得10
6秒前
6秒前
zzznznnn完成签到,获得积分10
6秒前
6秒前
马保国123发布了新的文献求助10
6秒前
6秒前
慕青应助wsljc134采纳,获得10
6秒前
7秒前
世界尽头完成签到,获得积分10
8秒前
8秒前
君与完成签到,获得积分10
8秒前
yili发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI5应助专注乐巧采纳,获得10
9秒前
自信晟睿发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759