A maximal overlap discrete wavelet packet transform coupled with an LSTM deep learning model for improving multilevel groundwater level forecasts

网络数据包 小波包分解 人工智能 计算机科学 离散小波变换 小波 地下水 机器学习 模式识别(心理学) 小波变换 地质学 计算机网络 岩土工程
作者
Dilip Kumar Roy,Ahmed A. Hashem,Michele L. Reba,Deborah L. Leslie,John W. Nowlin
出处
期刊:Discover water [Springer Nature]
卷期号:4 (1)
标识
DOI:10.1007/s43832-024-00073-1
摘要

Abstract Developing precise groundwater level (GWL) forecast models is essential for the optimal usage of limited groundwater resources and sustainable planning and management of water resources. In this study, an improved forecasting accuracy for up to 3 weeks ahead of GWLs in Bangladesh was achieved by employing a coupled Long Short Term Memory (LSTM) network-based deep learning algorithm and Maximal Overlap Discrete Wavelet Packet Transform (MODWPT) data preprocessing. The coupled LSTM-MODWPT model’s performance was compared with that of the LSTM model. For both standalone LSTM and LSTM-MODWPT models, the Random Forest feature selection approach was employed to select the ideal inputs from the candidate GWL lags. In the LSTM-MODWPT model, input GWL time series were decomposed using MODWPT. The ‘Fejér-Korovkin’ mother wavelet with a filter length of 18 was used to obtain a collection of scaling coefficients and wavelets for every single input time series. Model performance was assessed using five performance indices: Root Mean Squared Error; Scatter Index; Maximum Absolute Error; Median Absolute Deviation; and an a-20 index. The LSTM-MODWPT model outperformed standalone LSTM models for all time horizons in GWL forecasting. The percentage improvements in the forecasting accuracies were 36.28%, 32.97%, and 30.77%, respectively, for 1-, 2-, and 3-weeks ahead forecasts at the observation well GT3330001. Accordingly, the coupled LSTM-MODWPT model could potentially be used to enhance multiscale GWL forecasts. This research demonstrates that the coupled LSTM-MODWPT model could generate more precise GWL forecasts at the Bangladesh study site, with potential applications in other geographic locations globally.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
烊驼完成签到,获得积分10
3秒前
搜集达人应助认真如霜采纳,获得10
4秒前
Owen应助Incubus采纳,获得10
6秒前
领导范儿应助风清扬采纳,获得10
6秒前
xalone完成签到,获得积分10
7秒前
冷傲幻莲完成签到,获得积分10
8秒前
9秒前
dengdeng完成签到 ,获得积分10
9秒前
英吉利25发布了新的文献求助10
11秒前
大个应助初始采纳,获得10
12秒前
13秒前
冷傲幻莲发布了新的文献求助10
13秒前
杨华启应助小慧儿采纳,获得10
13秒前
16秒前
彭于晏应助Alex采纳,获得10
17秒前
18秒前
我是老大应助aria采纳,获得10
18秒前
今后应助yanGGGGGG采纳,获得10
20秒前
希望天下0贩的0应助lee采纳,获得10
23秒前
zs发布了新的文献求助10
23秒前
wanglixiang完成签到 ,获得积分10
23秒前
25秒前
27秒前
早睡早起发布了新的文献求助10
29秒前
大方的曼容完成签到 ,获得积分10
30秒前
现代的擎苍完成签到,获得积分0
30秒前
31秒前
完美世界应助zs采纳,获得10
32秒前
传奇3应助Rainbow采纳,获得10
32秒前
SciGPT应助计时器响了采纳,获得10
33秒前
星辰大海应助超级哑铃采纳,获得10
34秒前
大个应助1244341529采纳,获得10
35秒前
Yao完成签到,获得积分20
36秒前
大模型应助ssssss采纳,获得10
36秒前
王海洋完成签到,获得积分10
37秒前
赵亮亮完成签到,获得积分10
38秒前
小二郎应助SUV采纳,获得10
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5874980
求助须知:如何正确求助?哪些是违规求助? 6512400
关于积分的说明 15675637
捐赠科研通 4992660
什么是DOI,文献DOI怎么找? 2691250
邀请新用户注册赠送积分活动 1633584
关于科研通互助平台的介绍 1591214