A maximal overlap discrete wavelet packet transform coupled with an LSTM deep learning model for improving multilevel groundwater level forecasts

网络数据包 小波包分解 人工智能 计算机科学 离散小波变换 小波 地下水 机器学习 模式识别(心理学) 小波变换 地质学 计算机网络 岩土工程
作者
Dilip Kumar Roy,Ahmed A. Hashem,Michele L. Reba,Deborah L. Leslie,John W. Nowlin
出处
期刊:Discover water [Springer Nature]
卷期号:4 (1)
标识
DOI:10.1007/s43832-024-00073-1
摘要

Abstract Developing precise groundwater level (GWL) forecast models is essential for the optimal usage of limited groundwater resources and sustainable planning and management of water resources. In this study, an improved forecasting accuracy for up to 3 weeks ahead of GWLs in Bangladesh was achieved by employing a coupled Long Short Term Memory (LSTM) network-based deep learning algorithm and Maximal Overlap Discrete Wavelet Packet Transform (MODWPT) data preprocessing. The coupled LSTM-MODWPT model’s performance was compared with that of the LSTM model. For both standalone LSTM and LSTM-MODWPT models, the Random Forest feature selection approach was employed to select the ideal inputs from the candidate GWL lags. In the LSTM-MODWPT model, input GWL time series were decomposed using MODWPT. The ‘Fejér-Korovkin’ mother wavelet with a filter length of 18 was used to obtain a collection of scaling coefficients and wavelets for every single input time series. Model performance was assessed using five performance indices: Root Mean Squared Error; Scatter Index; Maximum Absolute Error; Median Absolute Deviation; and an a-20 index. The LSTM-MODWPT model outperformed standalone LSTM models for all time horizons in GWL forecasting. The percentage improvements in the forecasting accuracies were 36.28%, 32.97%, and 30.77%, respectively, for 1-, 2-, and 3-weeks ahead forecasts at the observation well GT3330001. Accordingly, the coupled LSTM-MODWPT model could potentially be used to enhance multiscale GWL forecasts. This research demonstrates that the coupled LSTM-MODWPT model could generate more precise GWL forecasts at the Bangladesh study site, with potential applications in other geographic locations globally.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
真是麻烦发布了新的文献求助10
刚刚
天天快乐应助长卿采纳,获得10
1秒前
1秒前
贝贝拉发布了新的文献求助10
2秒前
2秒前
认真科研发布了新的文献求助10
2秒前
小熊发布了新的文献求助10
2秒前
3秒前
3秒前
霍碧完成签到,获得积分10
3秒前
和尘同光发布了新的文献求助10
4秒前
KY源完成签到,获得积分10
4秒前
4秒前
lunyu完成签到,获得积分10
4秒前
我是老大应助寒冷乐驹采纳,获得10
5秒前
5秒前
坦率初柔发布了新的文献求助10
5秒前
情怀应助quan采纳,获得10
6秒前
田静然完成签到,获得积分20
6秒前
6秒前
Polaris发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
快乐十八发布了新的文献求助20
7秒前
8秒前
诚心尔琴发布了新的文献求助10
8秒前
打打应助LIKE采纳,获得10
8秒前
8秒前
活力的友卉完成签到,获得积分10
10秒前
郁金香发布了新的文献求助10
10秒前
11秒前
任我行发布了新的文献求助10
11秒前
Ava应助是小明啦采纳,获得10
12秒前
bobo发布了新的文献求助10
12秒前
nadeem发布了新的文献求助10
12秒前
跑山猪完成签到,获得积分10
12秒前
12秒前
ajun发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152976
求助须知:如何正确求助?哪些是违规求助? 2804157
关于积分的说明 7857469
捐赠科研通 2461911
什么是DOI,文献DOI怎么找? 1310570
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601788