Artificial intelligence motivated flexible single-electrode mode multilayer triboelectric sensor for smart mobility systems

摩擦电效应 材料科学 电极 二硫化钼 石墨烯 纳米技术 计算机科学 复合材料 物理化学 化学
作者
Yang Li,Mingze Qin,Qinghui Lin,Jianwen Liu,Shixiang Wu,Zhao Yao,Yuanyue Li,Tao Sun,Hao Kan
出处
期刊:Nano Energy [Elsevier]
卷期号:125: 109515-109515 被引量:3
标识
DOI:10.1016/j.nanoen.2024.109515
摘要

Triboelectric tactile sensing technique is increasingly coming into people's lives to bring convenience, so that there is an urgent necessity for this technique to be applied to smart mobility to increase safety and enhance the mobility experience. Herein, a single-electrode mode multilayer triboelectric sensor (MTS) motivated by artificial intelligence (AI) is proposed, which consists of styrene-butadiene-styrene (SBS)/ poly (vinylida-ene fluoride-trifluoroethylene) (PVDF-TrFE) nanofibers (NFs) film as the friction layer and substrate, laser-induced graphene (LIG)/molybdenum disulfide (MoS2) as the charge trapping layer, and Ag as the electrode. The MTS exhibits remarkable sensing performance, such as a wide response range of 5-100 N, 0.4-2 Hz multi-frequency response capability, and non-contact sensing, as well as distinguished self-powered performance. To demonstrate the practical significance of the proposed MTS, two applications are explored specifically after equipping with AI, including: (i) a smart in-vehicle system is constructed, which consists of unlocking section and multifunctional control with early warning section. (ii) a smart car control system is implemented, which can carry out special tasks instead of humans. These applications provide reliable ways to promote the development of human-machine interaction and smart mobility, as well as help to make lifestyles and mobility smarter, safer and more convenient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助洞悉采纳,获得10
1秒前
抵澳报了发布了新的文献求助30
4秒前
夏侯丹烟完成签到,获得积分10
4秒前
平常的不评完成签到 ,获得积分10
5秒前
xiaoshi完成签到,获得积分10
6秒前
闹闹发布了新的文献求助20
8秒前
8秒前
朴素的梦岚完成签到,获得积分10
10秒前
PH发布了新的文献求助10
14秒前
夏侯丹烟发布了新的文献求助10
15秒前
TTT完成签到,获得积分10
17秒前
21秒前
22秒前
TTT发布了新的文献求助10
23秒前
23秒前
24秒前
润清完成签到,获得积分10
24秒前
Wenpandaen应助洞悉采纳,获得10
26秒前
huofuman发布了新的文献求助10
27秒前
郭义敏完成签到,获得积分0
27秒前
欧拉不拉完成签到,获得积分10
27秒前
培a发布了新的文献求助10
29秒前
大胆海瑶完成签到,获得积分10
31秒前
千年雪松发布了新的文献求助10
32秒前
喀喀湖完成签到,获得积分20
34秒前
跳跃仙人掌完成签到 ,获得积分0
38秒前
领导范儿应助huofuman采纳,获得10
39秒前
orixero应助闹闹采纳,获得10
40秒前
悦己完成签到,获得积分10
41秒前
49秒前
Murphy_H完成签到,获得积分10
50秒前
52秒前
午见千山应助优雅香菇采纳,获得10
52秒前
NE完成签到,获得积分10
55秒前
Tokgo发布了新的文献求助10
56秒前
嗡嗡完成签到,获得积分10
57秒前
大个应助mingjie采纳,获得10
57秒前
58秒前
PH完成签到,获得积分10
58秒前
科研通AI2S应助洞悉采纳,获得10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138546
求助须知:如何正确求助?哪些是违规求助? 2789483
关于积分的说明 7791450
捐赠科研通 2445886
什么是DOI,文献DOI怎么找? 1300683
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079