Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis

肝细胞癌 医学 无线电技术 随机森林 主成分分析 规格# 试验装置 人工智能 放射科 核医学 计算机科学 内科学 程序设计语言
作者
Simone Famularo,Camilla Penzo,Cesare Maino,Flavio Milana,Riccardo Oliva,Jacques Marescaux,Michèle Diana,Fabrizio Romano,Felice Giuliante,Francesco Ardito,Gian Luca Grazi,Matteo Donadon,Guido Torzilli
出处
期刊:Ejso [Elsevier]
卷期号:51 (1): 108274-108274 被引量:6
标识
DOI:10.1016/j.ejso.2024.108274
摘要

Abstract

Introduction

Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Methods

3-phases CT scans were retrospectively collected among 4 Italian centres. DICOM files were manually segmented to detect the liver and the tumor(s). Radiomics features were extracted from the tumoral, peritumoral and healthy liver areas in each phase. Principal component analysis (PCA) was performed to reduce the dimensions of the dataset. Data were divided between training (70%) and test (30%) sets. Random-Forest (RF), fully connected MLP Artificial neural network (neuralnet) and extreme gradient boosting (XGB) models were fitted to predict MVI. Prediction accuracy was estimated in the test set.

Results

Between 2008 and 2022, 218 preoperative CT scans were collected. At the histological specimen, 72(33.02%) patients had MVI. First and second order radiomics features were extracted, obtaining 672 variables. PCA selected 58 dimensions explaining >95% of the variance.In the test set, the XGB model obtained Accuracy = 68.7% (Sens: 38.1%, Spec: 83.7%, PPV: 53.3% and NPV: 73.4%). The neuralnet showed an Accuracy = 50% (Sens: 52.3%, Spec: 48.8%, PPV: 33.3%, NPV: 67.7%). RF was the best performer (Acc = 96.8%, 95%CI: 0.91–0.99, Sens: 95.2%, Spec: 97.6%, PPV: 95.2% and NPV: 97.6%).

Conclusion

Our model allowed a high prediction accuracy of the presence of MVI at the time of HCC diagnosis. This could lead to change the treatment allocation, the surgical extension and the follow-up strategy for those patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝发布了新的文献求助10
刚刚
刚刚
1秒前
木梓发布了新的文献求助30
1秒前
1秒前
p65发布了新的文献求助10
1秒前
111完成签到,获得积分10
2秒前
如意闭月完成签到,获得积分10
2秒前
科研通AI6应助文艺的芫采纳,获得10
2秒前
李爱国应助yu采纳,获得10
2秒前
传奇3应助歪歪扣叉采纳,获得10
3秒前
小二郎应助YANGJIE6采纳,获得10
3秒前
4秒前
孙周发布了新的文献求助10
4秒前
pancake发布了新的文献求助30
4秒前
量子星尘发布了新的文献求助10
4秒前
www111发布了新的文献求助10
5秒前
5秒前
yy应助如烈火如止水采纳,获得10
5秒前
5秒前
南音完成签到,获得积分10
5秒前
宅宅粉发布了新的文献求助10
6秒前
ARIA完成签到,获得积分10
7秒前
whuhustwit发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
huahua完成签到 ,获得积分10
8秒前
9秒前
9秒前
caicai发布了新的文献求助10
9秒前
9秒前
10秒前
Lily完成签到,获得积分10
10秒前
传奇3应助pancake采纳,获得20
10秒前
CodeCraft应助pancake采纳,获得50
11秒前
SciGPT应助pancake采纳,获得30
11秒前
赘婿应助pancake采纳,获得10
11秒前
浅笑_随风发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577053
求助须知:如何正确求助?哪些是违规求助? 4662311
关于积分的说明 14740828
捐赠科研通 4602926
什么是DOI,文献DOI怎么找? 2526046
邀请新用户注册赠送积分活动 1495963
关于科研通互助平台的介绍 1465478