Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis

肝细胞癌 医学 无线电技术 随机森林 主成分分析 规格# 试验装置 人工智能 放射科 核医学 计算机科学 内科学 程序设计语言
作者
Simone Famularo,Camilla Penzo,Cesare Maino,Flavio Milana,Riccardo Oliva,Jacques Marescaux,Michèle Diana,Fabrizio Romano,Felice Giuliante,Francesco Ardito,Gian Luca Grazi,Matteo Donadon,Guido Torzilli
出处
期刊:Ejso [Elsevier BV]
卷期号:51 (1): 108274-108274 被引量:5
标识
DOI:10.1016/j.ejso.2024.108274
摘要

Abstract

Introduction

Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Methods

3-phases CT scans were retrospectively collected among 4 Italian centres. DICOM files were manually segmented to detect the liver and the tumor(s). Radiomics features were extracted from the tumoral, peritumoral and healthy liver areas in each phase. Principal component analysis (PCA) was performed to reduce the dimensions of the dataset. Data were divided between training (70%) and test (30%) sets. Random-Forest (RF), fully connected MLP Artificial neural network (neuralnet) and extreme gradient boosting (XGB) models were fitted to predict MVI. Prediction accuracy was estimated in the test set.

Results

Between 2008 and 2022, 218 preoperative CT scans were collected. At the histological specimen, 72(33.02%) patients had MVI. First and second order radiomics features were extracted, obtaining 672 variables. PCA selected 58 dimensions explaining >95% of the variance.In the test set, the XGB model obtained Accuracy = 68.7% (Sens: 38.1%, Spec: 83.7%, PPV: 53.3% and NPV: 73.4%). The neuralnet showed an Accuracy = 50% (Sens: 52.3%, Spec: 48.8%, PPV: 33.3%, NPV: 67.7%). RF was the best performer (Acc = 96.8%, 95%CI: 0.91–0.99, Sens: 95.2%, Spec: 97.6%, PPV: 95.2% and NPV: 97.6%).

Conclusion

Our model allowed a high prediction accuracy of the presence of MVI at the time of HCC diagnosis. This could lead to change the treatment allocation, the surgical extension and the follow-up strategy for those patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
福轩发布了新的文献求助10
1秒前
Luo发布了新的文献求助10
2秒前
修士阿贤关注了科研通微信公众号
2秒前
2秒前
4秒前
田様应助开朗白山采纳,获得10
4秒前
4秒前
Ava应助tttt采纳,获得10
5秒前
yym发布了新的文献求助10
8秒前
脑洞疼应助hwc717296采纳,获得10
9秒前
烂漫绿海发布了新的文献求助10
9秒前
jingjingjing完成签到,获得积分20
9秒前
思源应助梨llll采纳,获得10
10秒前
ding应助siriuslee99采纳,获得10
10秒前
zhangyu应助STP顶峰相见采纳,获得10
10秒前
是草莓完成签到,获得积分10
11秒前
xianer发布了新的文献求助10
11秒前
黄天完成签到 ,获得积分10
11秒前
11秒前
chrysan发布了新的文献求助30
13秒前
14秒前
正直的语蝶完成签到,获得积分10
14秒前
14秒前
15秒前
DAISHU发布了新的文献求助10
15秒前
hwc717296完成签到,获得积分10
15秒前
16秒前
16秒前
Hello应助ri_290采纳,获得10
16秒前
鹿茸与共发布了新的文献求助10
18秒前
19秒前
别来无恙完成签到,获得积分10
19秒前
20秒前
hwc717296发布了新的文献求助10
20秒前
SciGPT应助DAISHU采纳,获得30
21秒前
英吉利25发布了新的文献求助10
21秒前
21秒前
zhjwu发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075