Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis

肝细胞癌 医学 无线电技术 随机森林 主成分分析 规格# 试验装置 人工智能 放射科 核医学 计算机科学 内科学 程序设计语言
作者
Simone Famularo,Camilla Penzo,Cesare Maino,Flavio Milana,Riccardo Oliva,Jacques Marescaux,Michèle Diana,Fabrizio Romano,Felice Giuliante,Francesco Ardito,Gian Luca Grazi,Matteo Donadon,Guido Torzilli
出处
期刊:Ejso [Elsevier]
卷期号:51 (1): 108274-108274 被引量:6
标识
DOI:10.1016/j.ejso.2024.108274
摘要

Abstract

Introduction

Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Methods

3-phases CT scans were retrospectively collected among 4 Italian centres. DICOM files were manually segmented to detect the liver and the tumor(s). Radiomics features were extracted from the tumoral, peritumoral and healthy liver areas in each phase. Principal component analysis (PCA) was performed to reduce the dimensions of the dataset. Data were divided between training (70%) and test (30%) sets. Random-Forest (RF), fully connected MLP Artificial neural network (neuralnet) and extreme gradient boosting (XGB) models were fitted to predict MVI. Prediction accuracy was estimated in the test set.

Results

Between 2008 and 2022, 218 preoperative CT scans were collected. At the histological specimen, 72(33.02%) patients had MVI. First and second order radiomics features were extracted, obtaining 672 variables. PCA selected 58 dimensions explaining >95% of the variance.In the test set, the XGB model obtained Accuracy = 68.7% (Sens: 38.1%, Spec: 83.7%, PPV: 53.3% and NPV: 73.4%). The neuralnet showed an Accuracy = 50% (Sens: 52.3%, Spec: 48.8%, PPV: 33.3%, NPV: 67.7%). RF was the best performer (Acc = 96.8%, 95%CI: 0.91–0.99, Sens: 95.2%, Spec: 97.6%, PPV: 95.2% and NPV: 97.6%).

Conclusion

Our model allowed a high prediction accuracy of the presence of MVI at the time of HCC diagnosis. This could lead to change the treatment allocation, the surgical extension and the follow-up strategy for those patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助weiqi采纳,获得10
1秒前
2秒前
顾矜应助piers采纳,获得10
2秒前
积极小懒虫完成签到,获得积分10
3秒前
wyyt完成签到,获得积分10
3秒前
水冰冰完成签到 ,获得积分10
4秒前
FashionBoy应助水123采纳,获得10
4秒前
tudou0210发布了新的文献求助20
5秒前
我是老大应助Weilang采纳,获得30
5秒前
隐形不凡完成签到,获得积分10
6秒前
踏实沂完成签到 ,获得积分10
6秒前
yangdoudou关注了科研通微信公众号
9秒前
lansing完成签到 ,获得积分10
9秒前
Li完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
结实天川发布了新的文献求助10
13秒前
微笑完成签到,获得积分10
14秒前
充电宝应助1234567采纳,获得10
15秒前
李桂芳完成签到,获得积分10
17秒前
拽而不狂完成签到,获得积分10
17秒前
花汀酒完成签到 ,获得积分10
18秒前
是真的宇航员啊完成签到,获得积分10
19秒前
20秒前
20秒前
文艺的懿完成签到,获得积分10
22秒前
水123发布了新的文献求助10
25秒前
匡杰嘉发布了新的文献求助10
25秒前
26秒前
26秒前
山长子完成签到,获得积分10
27秒前
清爽的诗槐完成签到,获得积分10
28秒前
拽而不狂发布了新的文献求助10
30秒前
swan完成签到 ,获得积分10
30秒前
31秒前
愤怒的连虎完成签到,获得积分20
31秒前
Amber发布了新的文献求助10
32秒前
善学以致用应助WYH采纳,获得10
32秒前
草拟大坝完成签到 ,获得积分0
33秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603927
求助须知:如何正确求助?哪些是违规求助? 4688787
关于积分的说明 14856110
捐赠科研通 4695468
什么是DOI,文献DOI怎么找? 2541034
邀请新用户注册赠送积分活动 1507185
关于科研通互助平台的介绍 1471832