Identification and preliminary validation of differently expressed genes as candidate biomarkers associated with atherosclerosis

生物 小桶 计算生物学 小RNA 微阵列 基因 微阵列分析技术 遗传学 基因表达 转录组
作者
Liqin Zhou,Liping Zhou,Yong‐Min Liang,Congying Chen,Yuanyuan Qian,Dayong Lou,Huanjie Ma,S Alex Wang
出处
期刊:Gene [Elsevier]
卷期号:915: 148410-148410
标识
DOI:10.1016/j.gene.2024.148410
摘要

Atherosclerosis (AS) is the primary cause of deadly cardio-cerebro vascular diseases globally. This study aims to explore the key differentially expressed genes (DEGs), potentially serving as predictive biomarkers for AS. Microarray datasets were retrieved from the GEO database for DEGs and DE-miRNAs identification. Then biological function of DEGs were elucidated based on gene ontology (GO) and KEGG pathway enrichment analysis. The protein–protein interaction (PPI) network and DEGs-DE-miRNAs network were constructed, with emphasis on hub DEGs selection and their interconnections. Additionally, receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic precision of hub DEGs for AS. More importantly, an AS Syrian Golden hamster model was established to validate the expression levels of hub DEGs in AS. A total of 203 DEGs and 10 DE-miRNAs were screened, with six genes were chosen as hub DEGs. These DEGs were significantly enriched in AS-related biological processes and pathways, such as immune and inflammatory response, cellular response to IL-1 and TNF, positive regulation of angiogenesis, Type I diabetes mellitus, Cytokine-cytokine receptor interaction, TLR signaling pathway. Also, these DEGs and DE-miRNAs formed a closely-interacted DE-miRNAs - DEGs - KEGG pathway network. Besides, hub DEGs presented promising diagnostic potential for AS (AUC: 0.781 ∼ 0.887). In addition, the protein expression levels of TNF-α, CXCL8, CCL4, IL-1β, CCL3 and CCR8 were significantly increased in AS group Syrian Golden hamsters. The identified candidate genes TNF, CXCL8, CCL4, IL1B, CCL3 and CCR8 may have the potential to serve as prognostic biomarker in diagnosing AS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助R先生采纳,获得50
刚刚
刚刚
小嘎完成签到 ,获得积分10
1秒前
1秒前
1秒前
小虎发布了新的文献求助30
1秒前
2秒前
superworm1完成签到,获得积分10
2秒前
不懂事的小孩完成签到,获得积分10
2秒前
张瑶完成签到,获得积分10
2秒前
chloe完成签到 ,获得积分10
2秒前
桐桐应助申小萌采纳,获得10
3秒前
星星泡饭完成签到,获得积分10
3秒前
健忘曼云完成签到,获得积分10
3秒前
晶晶妹妹发布了新的文献求助10
3秒前
3秒前
通~发布了新的文献求助10
4秒前
4秒前
xiaohongmao完成签到,获得积分10
4秒前
科研通AI5应助6680668采纳,获得10
5秒前
5秒前
卡卡发布了新的文献求助10
6秒前
7秒前
欢呼鼠标发布了新的文献求助10
7秒前
appearance发布了新的文献求助10
7秒前
奋斗的凡完成签到 ,获得积分10
7秒前
ice完成签到 ,获得积分10
8秒前
junc完成签到,获得积分10
8秒前
小小完成签到,获得积分20
8秒前
10秒前
11秒前
R先生完成签到,获得积分10
11秒前
小土豆完成签到,获得积分10
11秒前
申小萌完成签到,获得积分10
11秒前
饭小心发布了新的文献求助10
11秒前
kevindeng完成签到,获得积分10
12秒前
12秒前
12秒前
肖俊彦发布了新的文献求助10
12秒前
情怀应助星星泡饭采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762