ML-Based Radiomics Analysis for Breast Cancer Classification in DCE-MRI

无线电技术 计算机科学 乳腺癌 人工智能 随机森林 支持向量机 医学 对比度(视觉) 模式识别(心理学) 乳房磁振造影 机器学习 内科学 癌症 乳腺摄影术
作者
Francesco Prinzi,Alessia Angela Maria Orlando,Salvatore Gaglio,Massimo Midiri,Salvatore Vitabile
出处
期刊:Communications in computer and information science 卷期号:: 144-158 被引量:5
标识
DOI:10.1007/978-3-031-24801-6_11
摘要

Breast cancer is the most common malignancy that threatening women's health. Although Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) for breast lesions characterization is widely used in the clinical practice, physician grading performance is still not optimal, showing a specificity of about 72%. In this work Radiomics was used to analyze a dataset acquired with two different protocols in order to train Machine-Learning algorithms for breast cancer classification. Original radiomic features were expanded considering Laplacian of Gaussian filtering and Wavelet Transform images to evaluate whether they can improve predictive performance. A Multi-Instant features selection involving the seven instants of the DCE-MRI sequence was proposed to select the set of most descriptive features. Features were harmonized using the ComBat algorithm to handle the multi-protocol dataset. Random Forest, XGBoost and Support Vector Machine algorithms were compared to find the best DCE-MRI instant for breast cancer classification: the pre-contrast and the third post-contrast instants resulted as the most informative items. Random Forest can be considered the optimal algorithm showing an Accuracy of 0.823, AUC-ROC of 0.877, Specificity of 0.882, Sensitivity of 0.764, PPV of 0.866, and NPV of 0.789 on the third post-contrast instant using an independent test set. Finally, Shapley values were used as Explainable AI algorithm to prove an high contribution of Original and Wavelet features in the final prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
12关注了科研通微信公众号
刚刚
Liu发布了新的文献求助10
刚刚
1秒前
1秒前
司空博涛完成签到,获得积分20
1秒前
qiong发布了新的文献求助10
2秒前
在水一方应助锅锅采纳,获得10
2秒前
Bminor完成签到,获得积分10
3秒前
4秒前
4秒前
Ava应助qwfwe采纳,获得10
4秒前
cc发布了新的文献求助30
4秒前
4秒前
悦耳亦云发布了新的文献求助10
4秒前
薛布慧完成签到,获得积分10
5秒前
5秒前
1111发布了新的文献求助10
6秒前
6秒前
虚幻慕灵完成签到,获得积分20
6秒前
ivyyyyyy完成签到,获得积分20
7秒前
杨琳发布了新的文献求助10
7秒前
8秒前
一年生黑麦草完成签到,获得积分10
8秒前
ws_WS_完成签到,获得积分10
8秒前
书芹完成签到,获得积分10
8秒前
xiaofeizhu完成签到,获得积分10
8秒前
8秒前
萱棚发布了新的文献求助10
9秒前
juice发布了新的文献求助10
9秒前
123发布了新的文献求助10
9秒前
热情的未来完成签到,获得积分20
10秒前
向日葵完成签到,获得积分10
10秒前
海皇星空完成签到,获得积分10
11秒前
高丽华发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951389
求助须知:如何正确求助?哪些是违规求助? 3496717
关于积分的说明 11084234
捐赠科研通 3227173
什么是DOI,文献DOI怎么找? 1784313
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801110