清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Machine Learning Framework for Physics-Based Multi-Fidelity Modeling and Health Monitoring for a Composite Wing

忠诚 高保真 计算机科学 有限元法 人工神经网络 刚度 实验数据 机器学习 人工智能 模拟 工程类 结构工程 数学 电信 统计 电气工程
作者
Gaurav Makkar,Cameron Smith,George Drakoulas,Fotis Kopsaftopoulos,Farhan Gandhi
标识
DOI:10.1115/imece2022-94850
摘要

Abstract Computational mechanics is a useful tool in the structural health monitoring community for accurately predicting the mechanical performance of various components. However, high-fidelity models simulated through the finite element analysis (FEA) necessitate a large amount of computing power. This paper presents a new approach to develop a multi-fidelity model using artificial neural networks for health monitoring purposes. The proposed framework provides significant savings in computational time compared to a model trained only using high-fidelity data, while maintaining an acceptable level of accuracy. The analysis is conducted using two finite element models, of different fidelity, of an unmanned aerial vehicle (UAV) wing, with damage modeled at six locations, and varying severity. The damage is modeled by changing the stiffness properties of the materials at these locations. The algorithm developed aims at minimizing the number of high-fidelity data points for correcting the outputs of the low-fidelity model. It was observed that the low-fidelity model requires 8 high-fidelity data points to meet the desired error tolerance. This corrected low-fidelity model is then used for locating and quantifying the damage given the strains and frequency by expanding the previously trained network to output damage diagnosis results. The model with applied correction is able to locate the damage with an accuracy of ∼ 94% and quantify the damage with an accuracy of 93%. The performance of the corrected low-fidelity model is compared with a network trained only with high-fidelity datasets and it was observed that the corrected model requires 54% fewer data points as compared to the high-fidelity trained network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤恳书包完成签到,获得积分10
7秒前
yang完成签到 ,获得积分10
10秒前
xianyaoz完成签到 ,获得积分0
10秒前
19秒前
Jasper应助无限的以亦采纳,获得10
20秒前
大方的荟完成签到,获得积分10
31秒前
小小王完成签到 ,获得积分10
34秒前
38秒前
gao完成签到 ,获得积分10
40秒前
张wx_100完成签到,获得积分10
40秒前
青雉流云完成签到,获得积分20
42秒前
风中的蜜蜂完成签到,获得积分10
43秒前
44秒前
滕皓轩完成签到 ,获得积分20
46秒前
航行天下完成签到 ,获得积分10
49秒前
开心夏旋完成签到 ,获得积分10
53秒前
资白玉完成签到 ,获得积分0
53秒前
聪明的泡面完成签到 ,获得积分10
54秒前
大轩完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Kevin发布了新的文献求助10
1分钟前
violetlishu完成签到 ,获得积分10
1分钟前
1分钟前
干饭大王应助Echo_1995采纳,获得10
1分钟前
纯真的梦竹完成签到,获得积分10
1分钟前
Gary完成签到 ,获得积分10
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
racill完成签到 ,获得积分10
1分钟前
踏实的南琴完成签到 ,获得积分10
1分钟前
fkwwdamocles完成签到,获得积分10
2分钟前
tyro完成签到,获得积分10
2分钟前
意境完成签到 ,获得积分10
2分钟前
husky完成签到,获得积分10
2分钟前
natsu401完成签到 ,获得积分10
2分钟前
jibenkun完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968543
求助须知:如何正确求助?哪些是违规求助? 3513358
关于积分的说明 11167312
捐赠科研通 3248700
什么是DOI,文献DOI怎么找? 1794453
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664