Data-driven risk-averse newsvendor problems: developing the CVaR criteria and support vector machines

CVAR公司 报童模式 数学优化 风险厌恶(心理学) 计量经济学 计算机科学 订单(交换) 经济 预期短缺 风险管理 数学 数理经济学 期望效用假设 法学 供应链 财务 政治学 管理
作者
Zhenyu Chen
出处
期刊:International Journal of Production Research [Informa]
卷期号:62 (4): 1221-1238 被引量:1
标识
DOI:10.1080/00207543.2023.2179350
摘要

AbstractIncorporating decision-makers' risk preferences into data-driven newsvendor models and developing machine learning methods to solve the models are the challenging problems addressed in this study. To consider different distributions and decision-makers' different risk preferences for the two losses of the total cost newsvendor model, the symmetrical, the partial symmetrical and the asymmetrical CVaR criteria are introduced. The regularisation, the primal-dual approach and the kernels in support vector machines are used to transform the data-driven risk-averse newsvendor problems under the CVaR criterion into the convex quadratic programming problems with good theoretical properties. Computational experiments are conducted on a real-world dataset. The models under the partial symmetrical and the asymmetrical CVaR criteria obtained good performances, but that under the symmetrical CVaR criterion suffered the underfitting problem. Two factors including the degrees of risk aversion for the two losses in the total cost newsvendor model and the empirical errors of data-driven models affect order decisions. The degrees of risk aversion for the two losses have anti-directional effects on order quantities. The introduction of asymmetrical CVaR criterion paves a new way to reveal the effects of different risk references for different losses on order decisions, and has the potential to improve newsvendor decisions.KEYWORDS: Data sciencenewsvendor modelrisk aversionconditional value-at-risksupport vector machine Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available upon request from the corresponding author.Additional informationNotes on contributorsZhen-Yu ChenZhen-Yu Chen received his Ph.D. from the University of Chinese Academy of Sciences in 2008. He is an associate professor in Northeastern University, China. His research interests include data mining, operational research and data-driven optimisation. He has coauthored some journal publications including INFORMS Journal on Computing, European Journal of Operational Research, Journal of the Operational Research Society, Knowledge and Information Systems, Knowledge-based Systems, among others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
本草石之寒温完成签到 ,获得积分10
5秒前
老实夏岚完成签到,获得积分10
6秒前
ksr8888完成签到,获得积分10
6秒前
科研通AI2S应助3268590946采纳,获得10
6秒前
7秒前
溴氧铋发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助Pises采纳,获得10
8秒前
8秒前
整齐水杯应助kelvin采纳,获得50
9秒前
科研通AI2S应助酥酥采纳,获得10
11秒前
Allen发布了新的文献求助10
12秒前
12秒前
13秒前
大个应助mo采纳,获得10
13秒前
13秒前
3268590946完成签到,获得积分20
15秒前
moom完成签到 ,获得积分10
16秒前
Ava应助樱桃小王子采纳,获得10
16秒前
Orange应助薛定谔的猫采纳,获得30
17秒前
17秒前
18秒前
我是老大应助Eric采纳,获得10
20秒前
独摇之发布了新的文献求助10
20秒前
阔达的无剑应助溴氧铋采纳,获得20
20秒前
CoNor发布了新的文献求助10
23秒前
23秒前
韩涵发布了新的文献求助10
27秒前
27秒前
zhonghy0219完成签到,获得积分10
28秒前
lixy完成签到 ,获得积分10
28秒前
来自三百完成签到,获得积分10
29秒前
简单寻冬完成签到 ,获得积分10
31秒前
everglow发布了新的文献求助30
32秒前
情怀应助sean采纳,获得10
33秒前
34秒前
CoNor完成签到,获得积分10
34秒前
lsc完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161774
求助须知:如何正确求助?哪些是违规求助? 2813049
关于积分的说明 7898270
捐赠科研通 2472043
什么是DOI,文献DOI怎么找? 1316316
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129