SSDA-YOLO: Semi-supervised domain adaptive YOLO for cross-domain object detection

领域(数学分析) 人工智能 计算机科学 计算机视觉 对象(语法) 目标检测 编码(集合论) 域适应 一致性(知识库) 适应(眼睛) 探测器 模式识别(心理学) 数学 数学分析 电信 物理 集合(抽象数据类型) 分类器(UML) 光学 程序设计语言
作者
Huayi Zhou,Fei Jiang,Hongtao Lu
出处
期刊:Computer Vision and Image Understanding [Elsevier]
卷期号:229: 103649-103649 被引量:31
标识
DOI:10.1016/j.cviu.2023.103649
摘要

Domain adaptive object detection (DAOD) aims to alleviate transfer performance degradation caused by the cross-domain discrepancy. However, most existing DAOD methods are dominated by outdated and computationally intensive two-stage Faster R-CNN, which is not the first choice for industrial applications. In this paper, we propose a novel semi-supervised domain adaptive YOLO (SSDA-YOLO) based method to improve cross-domain detection performance by integrating the compact one-stage stronger detector YOLOv5 with domain adaptation. Specifically, we adapt the knowledge distillation framework with the Mean Teacher model to assist the student model in obtaining instance-level features of the unlabeled target domain. We also utilize the scene style transfer to cross-generate pseudo images in different domains for remedying image-level differences. In addition, an intuitive consistency loss is proposed to further align cross-domain predictions. We evaluate SSDA-YOLO on public benchmarks including PascalVOC, Clipart1k, Cityscapes, and Foggy Cityscapes. Moreover, to verify its generalization, we conduct experiments on yawning detection datasets collected from various real classrooms. The results show considerable improvements of our method in these DAOD tasks, which reveals both the effectiveness of proposed adaptive modules and the urgency of applying more advanced detectors in DAOD. Our code is available on https://github.com/hnuzhy/SSDA-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖挺完成签到 ,获得积分20
1秒前
八对完成签到,获得积分10
2秒前
2秒前
拥有魔法的小康完成签到,获得积分20
3秒前
zqs354关注了科研通微信公众号
3秒前
lalala发布了新的文献求助10
3秒前
4秒前
5秒前
贾贾完成签到,获得积分10
6秒前
6秒前
zjujirenjie发布了新的文献求助10
7秒前
许右发布了新的文献求助10
7秒前
7秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
mhl11应助科研通管家采纳,获得20
9秒前
思源应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
supertkeb应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
冬冬应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得100
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
CodeCraft应助曾经阁采纳,获得10
9秒前
大方百招完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
13秒前
13秒前
约以文发布了新的文献求助30
14秒前
ZZP27发布了新的文献求助10
14秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600