Physics-guided framework of neural network for fast full-field temperature prediction of indoor environment

人工神经网络 替代模型 忠诚 计算机科学 领域(数学) 计算机模拟 能量(信号处理) 物理定律 机器学习 人工智能 模拟 物理 统计 数学 纯数学 电信 量子力学
作者
Gang Jing,Chenguang Ning,Jingwen Qin,Xudong Ding,Peiyong Duan,Haitao Liu,Huiyun Sang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:68: 106054-106054 被引量:20
标识
DOI:10.1016/j.jobe.2023.106054
摘要

This study explored the fast full-field temperature prediction of indoor environment, which is valuable for improving energy efficiency and indoor thermal comfort. To this end, a physics-guided framework of neural networks was proposed to fast predict the full-field temperature by integrating the numerical simulation, physical laws and sparse measured data. The proposed framework comprised three basic components: (i) a surrogate model, (ii) a discrepancy model, (iii) a recovery model. First, a physics-informed neural network-based surrogate model approximating the behavior of high-fidelity simulation model was constructed to capture the trend of the temperature evolution. Thereafter, the transfer learning-based discrepancy model minimizing the discrepancy between the observation and direct numerical simulation was constructed with limited available observation data. Last, integrating the parameters of both surrogate and discrepancy model, the recovery model was built to give the best and fast full-filed temperature prediction. The proposed approach can bridge the gap between the numerical simulation and real world. The performance was validated and the results demonstrate that the proposed method provide a better full-field temperature prediction for the indoor environment with a small number of measured data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Frank应助科研通管家采纳,获得10
刚刚
Frank应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
Frank应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得20
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
ljr完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
iOhyeye23完成签到 ,获得积分10
1秒前
mengtingmei应助科研通管家采纳,获得10
1秒前
你好啊完成签到,获得积分10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
Frank应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
kaka091完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Frank应助科研通管家采纳,获得10
2秒前
秦汉的抉择完成签到,获得积分10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
1101592875发布了新的文献求助10
3秒前
Sugarhm完成签到,获得积分10
3秒前
汪汪队立大功完成签到,获得积分10
3秒前
兴奋小丸子完成签到,获得积分10
4秒前
摇摆小狗发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
DaSheng完成签到,获得积分10
6秒前
小夜子完成签到 ,获得积分10
6秒前
6秒前
cooling完成签到,获得积分10
6秒前
76完成签到,获得积分20
6秒前
yang完成签到,获得积分10
7秒前
8秒前
舒仲完成签到,获得积分10
8秒前
流浪汉完成签到,获得积分10
8秒前
陆lulu完成签到,获得积分10
8秒前
YHX完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131