Physics-guided framework of neural network for fast full-field temperature prediction of indoor environment

人工神经网络 替代模型 忠诚 计算机科学 领域(数学) 计算机模拟 能量(信号处理) 物理定律 机器学习 人工智能 模拟 物理 统计 数学 纯数学 电信 量子力学
作者
Gang Jing,Chenguang Ning,Jingwen Qin,Xudong Ding,Peiyong Duan,Haitao Liu,Huiyun Sang
出处
期刊:Journal of building engineering [Elsevier]
卷期号:68: 106054-106054 被引量:20
标识
DOI:10.1016/j.jobe.2023.106054
摘要

This study explored the fast full-field temperature prediction of indoor environment, which is valuable for improving energy efficiency and indoor thermal comfort. To this end, a physics-guided framework of neural networks was proposed to fast predict the full-field temperature by integrating the numerical simulation, physical laws and sparse measured data. The proposed framework comprised three basic components: (i) a surrogate model, (ii) a discrepancy model, (iii) a recovery model. First, a physics-informed neural network-based surrogate model approximating the behavior of high-fidelity simulation model was constructed to capture the trend of the temperature evolution. Thereafter, the transfer learning-based discrepancy model minimizing the discrepancy between the observation and direct numerical simulation was constructed with limited available observation data. Last, integrating the parameters of both surrogate and discrepancy model, the recovery model was built to give the best and fast full-filed temperature prediction. The proposed approach can bridge the gap between the numerical simulation and real world. The performance was validated and the results demonstrate that the proposed method provide a better full-field temperature prediction for the indoor environment with a small number of measured data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
cjl应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
能干巨人应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
momo应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助宋礼采纳,获得10
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685