Adaptive Uncertainty Distribution in Deep Learning for Unsupervised Underwater Image Enhancement

水下 人工智能 图像增强 无监督学习 深度学习 图像(数学) 计算机科学 分布(数学) 计算机视觉 数学 地质学 海洋学 数学分析
作者
Alzayat Saleh,Marcus Sheaves,Dean R. Jerry,Mostafa Rahimi Azghadi
标识
DOI:10.2139/ssrn.4362438
摘要

One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data. Underwater images are difficult to capture and are often of poor quality due to the distortion and loss of colour and contrast in water. This makes it difficult to train supervised deep learning models on large and diverse datasets, which can limit the model's performance. In this paper, we explore an alternative approach to supervised underwater image enhancement. Specifically, we propose a novel framework called Uncertainty Distribution Network (UDnet), which learns to adapt to Uncertainty Distribution in its unsupervised reference map (label) generation to produce enhanced output images. UDnet is composed of three main parts. A raw underwater image is first adjusted for contrast, saturation, and gamma correction; one of these adjusted images is then randomly fed to (1) a statistically guided multi-colour space stretch (SGMCSS) module that generates a reference map to be used by (2) a U-Net-like conditional variational autoencoder (cVAE) module, to extract features for feeding to (3) a probabilistic adaptive instance normalization (PAdaIN) block that encodes feature uncertainties for final enhanced image generation. We use the SGMCSS module to ensure visual consistency with the raw input image and to provide an alternative to training using a ground truth image. Hence, UDnet does not need manual human annotation and can learn with a limited amount of data to achieve state-of-the-art results. We evaluated UDnet on eight publicly-available datasets. The results show that it yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics. Our code is publicly available at https://github.com/alzayats/UDnet}{https://github.com/alzayats/UDnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
冲浪男孩226完成签到 ,获得积分10
2秒前
JIE发布了新的文献求助10
3秒前
程大海完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
竹筏过海应助科研通管家采纳,获得30
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
ED应助科研通管家采纳,获得10
4秒前
竹筏过海应助科研通管家采纳,获得30
4秒前
hoijuon应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得30
5秒前
所所应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
核桃应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
所所应助似月白采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
ED应助科研通管家采纳,获得10
6秒前
阳光初柔完成签到,获得积分20
7秒前
爱静静应助苫糖采纳,获得10
7秒前
STAN完成签到,获得积分10
8秒前
沉123发布了新的文献求助10
8秒前
8秒前
牛顿的苹果完成签到,获得积分10
8秒前
ljc完成签到,获得积分10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966069
求助须知:如何正确求助?哪些是违规求助? 3511435
关于积分的说明 11158171
捐赠科研通 3246056
什么是DOI,文献DOI怎么找? 1793288
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311