Adaptive Uncertainty Distribution in Deep Learning for Unsupervised Underwater Image Enhancement

水下 人工智能 图像增强 无监督学习 深度学习 图像(数学) 计算机科学 分布(数学) 计算机视觉 数学 地质学 海洋学 数学分析
作者
Alzayat Saleh,Marcus Sheaves,Dean R. Jerry,Mostafa Rahimi Azghadi
标识
DOI:10.2139/ssrn.4362438
摘要

One of the main challenges in deep learning-based underwater image enhancement is the limited availability of high-quality training data. Underwater images are difficult to capture and are often of poor quality due to the distortion and loss of colour and contrast in water. This makes it difficult to train supervised deep learning models on large and diverse datasets, which can limit the model's performance. In this paper, we explore an alternative approach to supervised underwater image enhancement. Specifically, we propose a novel framework called Uncertainty Distribution Network (UDnet), which learns to adapt to Uncertainty Distribution in its unsupervised reference map (label) generation to produce enhanced output images. UDnet is composed of three main parts. A raw underwater image is first adjusted for contrast, saturation, and gamma correction; one of these adjusted images is then randomly fed to (1) a statistically guided multi-colour space stretch (SGMCSS) module that generates a reference map to be used by (2) a U-Net-like conditional variational autoencoder (cVAE) module, to extract features for feeding to (3) a probabilistic adaptive instance normalization (PAdaIN) block that encodes feature uncertainties for final enhanced image generation. We use the SGMCSS module to ensure visual consistency with the raw input image and to provide an alternative to training using a ground truth image. Hence, UDnet does not need manual human annotation and can learn with a limited amount of data to achieve state-of-the-art results. We evaluated UDnet on eight publicly-available datasets. The results show that it yields competitive performance compared to other state-of-the-art approaches in quantitative as well as qualitative metrics. Our code is publicly available at https://github.com/alzayats/UDnet}{https://github.com/alzayats/UDnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KeYang发布了新的文献求助10
刚刚
刚刚
刚刚
研友_VZG7GZ应助Rita采纳,获得10
1秒前
1秒前
Ava应助迷路的晓旋采纳,获得10
1秒前
小仙女完成签到 ,获得积分10
1秒前
1秒前
勤劳小懒虫给勤劳小懒虫的求助进行了留言
3秒前
蔡蔡完成签到,获得积分10
4秒前
33333发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
我在发布了新的文献求助10
6秒前
噔噔蹬完成签到 ,获得积分10
7秒前
辛未发布了新的文献求助10
7秒前
9秒前
田様应助黄思雯采纳,获得10
9秒前
Yyyyyy完成签到,获得积分10
10秒前
ltyuli发布了新的文献求助10
11秒前
嗯啊完成签到,获得积分10
11秒前
ML发布了新的文献求助10
13秒前
13秒前
14秒前
张洪旗完成签到,获得积分10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
popvich应助科研通管家采纳,获得20
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207720
求助须知:如何正确求助?哪些是违规求助? 4385540
关于积分的说明 13657472
捐赠科研通 4244234
什么是DOI,文献DOI怎么找? 2328722
邀请新用户注册赠送积分活动 1326380
关于科研通互助平台的介绍 1278543