Silent Speech Recognition Based on Surface Electromyography Using a Few Electrode Sites Under the Guidance From High-Density Electrode Arrays

计算机科学 词汇 可穿戴计算机 语音识别 软件可移植性 学习迁移 卷积神经网络 电极阵列 人工智能 模式识别(心理学) 电极 哲学 语言学 化学 物理化学 嵌入式系统 程序设计语言
作者
Zhihang Deng,Xu Zhang,Xi Chen,Xiang Chen,Xun Chen,Erwei Yin
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11
标识
DOI:10.1109/tim.2023.3244849
摘要

Although surface electromyogram recorded from high-density electrode array is believed to carry sufficient spatial information that can benefit the decoding of motor intentions, the complexity of using the array hindered its widespread applications especially in wearable devices. This study is aimed to develop a non-acoustic modality of silent speech recognition that transfers knowledge learned from high-density array to a system using a few channels, with both high portability and performance. A convolutional neural network was established for recognizing a vocabulary of 33 Chinese words during subvocal speech production. The network was trained by the data recorded from face and neck muscles using two arrays with 64 channels in the source domain. Then it was calibrated through a transfer learning approach to grant its adaption to a new target domain with the data recorded by 8 separated electrodes, while its good capability of characterizing subvocal speech word patterns is expected to be maintained. The proposed method significantly outperformed three common classification approaches and the baseline approach without transfer learning (a network trained with data just from the target domain). Under conditions of electrode shift and cross-user variability, it still obtained performance improvements. The method is demonstrated to be viable for transfer learning across domains of electrode settings and it facilitates to improve the performance of silent speech recognition systems using separate electrode sites under the guidance from high-density of arrays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麦苳完成签到,获得积分10
刚刚
李爱国应助霍华淞采纳,获得10
2秒前
2秒前
2秒前
瘦瘦白薇发布了新的文献求助10
3秒前
4秒前
苦咖啡发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
温瞳发布了新的文献求助10
6秒前
7秒前
幽蓝发布了新的文献求助20
7秒前
明理忆文发布了新的文献求助30
8秒前
麻辣薯条发布了新的文献求助10
8秒前
liyunma发布了新的文献求助10
9秒前
海盐发布了新的文献求助200
10秒前
zzz发布了新的文献求助10
10秒前
tangtang发布了新的文献求助10
10秒前
如意发布了新的文献求助10
12秒前
Kirin发布了新的文献求助10
13秒前
酷波er应助明理忆文采纳,获得10
14秒前
xiaoxiaojiang发布了新的文献求助10
15秒前
15秒前
可爱的函函应助ddd777采纳,获得10
16秒前
17秒前
17秒前
18秒前
小马甲应助卡布达采纳,获得10
19秒前
19秒前
qq6756发布了新的文献求助10
20秒前
FFFFFFG发布了新的文献求助10
20秒前
mysrq应助呆瓜采纳,获得10
21秒前
22秒前
wanci应助Kirin采纳,获得10
22秒前
苦咖啡发布了新的文献求助10
23秒前
24秒前
xiaoxiaojiang完成签到 ,获得积分10
24秒前
JacekYu完成签到 ,获得积分10
25秒前
27秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Encyclopedia of Computational Mechanics,2 edition 800
The Healthy Socialist Life in Maoist China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270806
求助须知:如何正确求助?哪些是违规求助? 2910144
关于积分的说明 8352574
捐赠科研通 2580632
什么是DOI,文献DOI怎么找? 1403576
科研通“疑难数据库(出版商)”最低求助积分说明 655864
邀请新用户注册赠送积分活动 635245