Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries

排名(信息检索) 秩(图论) 人口 计量经济学 推论 置信区间 度量(数据仓库) 数学 统计 经济 计算机科学 人口学 社会学 数据挖掘 人工智能 组合数学
作者
Magne Mogstad,Joseph P. Romano,Azeem M. Shaikh,Daniel Wilhelm
出处
期刊:The Review of Economic Studies [Oxford University Press]
卷期号:91 (1): 476-518 被引量:40
标识
DOI:10.1093/restud/rdad006
摘要

Abstract It is often desired to rank different populations according to the value of some feature of each population. For example, it may be desired to rank neighbourhoods according to some measure of intergenerational mobility or countries according to some measure of academic achievement. These rankings are invariably computed using estimates rather than the true values of these features. As a result, there may be considerable uncertainty concerning the rank of each population. In this paper, we consider the problem of accounting for such uncertainty by constructing confidence sets for the rank of each population. We consider both the problem of constructing marginal confidence sets for the rank of a particular population as well as simultaneous confidence sets for the ranks of all populations. We show how to construct such confidence sets under weak assumptions. An important feature of all of our constructions is that they remain computationally feasible even when the number of populations is very large. We apply our theoretical results to re-examine the rankings of both neighbourhoods in the U.S. in terms of intergenerational mobility and developed countries in terms of academic achievement. The conclusions about which countries do best and worst at reading, math, and science are fairly robust to accounting for uncertainty. The confidence sets for the ranking of the fifty most populous commuting zones by measures of mobility are also found to be small. These confidence sets, however, become much less informative if one includes all commuting zones, if one considers neighbourhoods at a more granular level (counties, census tracts), or if one uses movers across areas to address concerns about selection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WTT完成签到,获得积分20
刚刚
刚刚
苹果煎饼发布了新的文献求助10
刚刚
yan发布了新的文献求助10
刚刚
云肜发布了新的文献求助30
刚刚
Hello应助FatDanny采纳,获得10
1秒前
斯文败类应助娜行采纳,获得10
1秒前
庄小因完成签到,获得积分10
1秒前
热心市民小刘给热心市民小刘的求助进行了留言
1秒前
小钟完成签到,获得积分10
1秒前
徐慕源发布了新的文献求助10
1秒前
2秒前
深情安青应助任医生采纳,获得10
2秒前
2秒前
sherrinford完成签到,获得积分10
2秒前
科研通AI2S应助VDC采纳,获得10
3秒前
YAOYAO发布了新的文献求助10
3秒前
舒适豌豆完成签到,获得积分10
3秒前
Amber应助reck采纳,获得10
3秒前
Renhong完成签到,获得积分10
4秒前
5秒前
桐桐应助咕噜仔采纳,获得10
5秒前
季宇完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助大脸妹采纳,获得10
6秒前
AA发布了新的文献求助10
7秒前
7秒前
7秒前
小二郎应助小喵采纳,获得10
8秒前
8秒前
stt发布了新的文献求助10
8秒前
9秒前
Oak完成签到 ,获得积分10
9秒前
9秒前
lyy完成签到 ,获得积分10
9秒前
10秒前
Anne应助fancy采纳,获得10
10秒前
10秒前
研友_汪老头完成签到,获得积分10
10秒前
雪花君完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678