电池(电)
阴极
材料科学
储能
电压
电气工程
纳米技术
功率(物理)
工程类
物理
量子力学
作者
Junjie Shi,Ke Mao,Qian Zhang,Zunyu Liu,Fei Long,Wen Li,Yixin Hou,Xinliang Li,Yanan Ma,Yue Yang,Luying Li,Chunyi Zhi,Yihua Gao
标识
DOI:10.1007/s40820-023-01023-7
摘要
Self-charging power systems collecting energy harvesting technology and batteries are attracting extensive attention. To solve the disadvantages of the traditional integrated system, such as highly dependent on energy supply and complex structure, an air-rechargeable Zn battery based on MoS2/PANI cathode is reported. Benefited from the excellent conductivity desolvation shield of PANI, the MoS2/PANI cathode exhibits ultra-high capacity (304.98 mAh g-1 in N2 and 351.25 mAh g-1 in air). In particular, this battery has the ability to collect, convert and store energy simultaneously by an air-rechargeable process of the spontaneous redox reaction between the discharged cathode and O2 from air. The air-rechargeable Zn batteries display a high open-circuit voltage (1.15 V), an unforgettable discharge capacity (316.09 mAh g-1 and the air-rechargeable depth is 89.99%) and good air-recharging stability (291.22 mAh g-1 after 50 air recharging/galvanostatic current discharge cycle). Most importantly, both our quasi-solid zinc ion batteries and batteries modules have excellent performance and practicability. This work will provide a promising research direction for the material design and device assembly of the next-generation self-powered system.
科研通智能强力驱动
Strongly Powered by AbleSci AI