Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 地质学 藻类
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Weiyi Jin,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107684-107684 被引量:11
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
吧唧吧唧发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
承乐发布了新的文献求助10
4秒前
4秒前
xian林完成签到,获得积分10
4秒前
5秒前
5秒前
莴笋叶发布了新的文献求助10
5秒前
5秒前
高兴的平露完成签到 ,获得积分10
5秒前
6秒前
睡醒喝瓶娃哈哈完成签到,获得积分10
6秒前
王帅完成签到,获得积分10
6秒前
八百标兵奔北坡完成签到 ,获得积分10
7秒前
香蕉觅云应助赵耀采纳,获得10
7秒前
能干可乐发布了新的文献求助10
7秒前
炙热愫发布了新的文献求助10
8秒前
drew发布了新的文献求助30
8秒前
yznfly给宣幻桃的求助进行了留言
8秒前
Bosen完成签到,获得积分10
8秒前
YZQ发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
ZZQQ完成签到,获得积分20
9秒前
山雷发布了新的文献求助10
9秒前
LinChen应助邵璞采纳,获得10
9秒前
9秒前
超级的鞅发布了新的文献求助10
10秒前
李健应助甜筒采纳,获得10
10秒前
11秒前
所所应助吧唧吧唧采纳,获得10
11秒前
jin_0124完成签到,获得积分10
11秒前
12秒前
young发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802