Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 藻类 地质学
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Weiyi Jin,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107684-107684 被引量:11
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VC完成签到,获得积分10
刚刚
shilong.yang发布了新的文献求助20
刚刚
忧郁小刺猬完成签到,获得积分10
1秒前
安白发布了新的文献求助10
1秒前
感谢大家完成签到,获得积分10
1秒前
进击的PhD应助海鸥跳海采纳,获得50
1秒前
1秒前
鳗鱼鞋垫发布了新的文献求助10
2秒前
FashionBoy应助1224323采纳,获得10
2秒前
二十二应助QLLW采纳,获得10
2秒前
真烦人完成签到,获得积分20
2秒前
3秒前
3秒前
alan66发布了新的文献求助10
4秒前
无敌最俊朗完成签到,获得积分0
4秒前
zzsossos完成签到,获得积分10
4秒前
三七发布了新的文献求助10
4秒前
四月一日发布了新的文献求助10
4秒前
Rixxed发布了新的文献求助10
5秒前
田様应助燕儿采纳,获得10
5秒前
6秒前
杨皓婷发布了新的文献求助10
6秒前
嘉佳伽应助凯凯采纳,获得10
6秒前
丰富靖琪完成签到 ,获得积分10
6秒前
Hanoi347应助凯凯采纳,获得10
6秒前
一一应助凯凯采纳,获得10
7秒前
顾矜应助VC采纳,获得10
7秒前
7秒前
琲珂发布了新的文献求助10
7秒前
我是真人完成签到,获得积分10
8秒前
饱满的煎饼完成签到,获得积分10
8秒前
研友_LpvElZ完成签到,获得积分10
10秒前
DYZ完成签到,获得积分10
10秒前
zzsossos发布了新的文献求助10
10秒前
所所应助科研小白采纳,获得20
10秒前
LIYI完成签到,获得积分10
11秒前
天真的马里奥完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
疯狂的战斗机关注了科研通微信公众号
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653486
求助须知:如何正确求助?哪些是违规求助? 4790016
关于积分的说明 15064423
捐赠科研通 4812137
什么是DOI,文献DOI怎么找? 2574306
邀请新用户注册赠送积分活动 1529926
关于科研通互助平台的介绍 1488661