Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 藻类 地质学
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Weiyi Jin,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107684-107684 被引量:11
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助唠叨的白曼采纳,获得10
1秒前
小古发布了新的文献求助10
3秒前
有人应助愤怒的绿蕊采纳,获得10
4秒前
古卡可可完成签到 ,获得积分10
4秒前
4秒前
4秒前
帅气凝海发布了新的文献求助30
5秒前
22完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
学术脑袋发布了新的文献求助10
8秒前
lifangqi完成签到,获得积分20
9秒前
10秒前
10秒前
hannah完成签到,获得积分10
11秒前
酸奶烤着吃完成签到,获得积分10
12秒前
Owen应助391X小king采纳,获得10
13秒前
13秒前
小古完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
梦幻发布了新的文献求助10
15秒前
楚博完成签到,获得积分10
15秒前
Am1r完成签到,获得积分10
15秒前
hannah发布了新的文献求助20
16秒前
赵康康发布了新的文献求助10
16秒前
蒸盐粥发布了新的文献求助10
19秒前
19秒前
21秒前
22秒前
实验顺利完成签到,获得积分10
23秒前
不期而遇发布了新的文献求助10
23秒前
23秒前
我是老大应助拼搏的无心采纳,获得10
24秒前
25秒前
25秒前
烟花应助hay采纳,获得10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
XUXU发布了新的文献求助10
26秒前
老黄鱼完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729235
求助须知:如何正确求助?哪些是违规求助? 5317147
关于积分的说明 15316199
捐赠科研通 4876228
什么是DOI,文献DOI怎么找? 2619311
邀请新用户注册赠送积分活动 1568858
关于科研通互助平台的介绍 1525365