Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 藻类 地质学
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Weiyi Jin,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107684-107684 被引量:11
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘小源发布了新的文献求助20
刚刚
EMC完成签到,获得积分10
刚刚
酷波er应助yian007采纳,获得10
刚刚
1秒前
1秒前
sx发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
香蕉觅云应助正直帆布鞋采纳,获得10
1秒前
1秒前
破伤疯发布了新的文献求助10
2秒前
sharkmelon应助我想毕业采纳,获得10
2秒前
2秒前
无所谓发布了新的文献求助10
2秒前
2秒前
DustxhX发布了新的文献求助10
3秒前
3秒前
一站到底发布了新的文献求助10
3秒前
3秒前
3秒前
Sharon完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
俊俊完成签到,获得积分20
4秒前
4秒前
xupt唐僧完成签到,获得积分10
4秒前
a553355发布了新的文献求助10
5秒前
天天完成签到,获得积分10
5秒前
葫芦娃完成签到,获得积分10
5秒前
同力力力发布了新的文献求助10
5秒前
5秒前
ptalala发布了新的文献求助10
6秒前
失眠的月光完成签到 ,获得积分10
6秒前
6秒前
善学以致用应助从容问雁采纳,获得10
6秒前
yundanli完成签到,获得积分10
6秒前
顺利的翎发布了新的文献求助10
6秒前
dudu123发布了新的文献求助20
7秒前
having发布了新的文献求助30
7秒前
JJJLX发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661387
求助须知:如何正确求助?哪些是违规求助? 4838678
关于积分的说明 15095847
捐赠科研通 4820153
什么是DOI,文献DOI怎么找? 2579773
邀请新用户注册赠送积分活动 1534034
关于科研通互助平台的介绍 1492769