Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 地质学 藻类
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Weiyi Jin,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107684-107684 被引量:11
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助hulahula采纳,获得10
2秒前
zhaoyanan发布了新的文献求助10
2秒前
冰墩墩发布了新的文献求助30
2秒前
2秒前
2秒前
氟锑酸发布了新的文献求助10
3秒前
调皮煎蛋完成签到,获得积分10
4秒前
4秒前
陈HIAHIA完成签到,获得积分10
4秒前
XXF完成签到,获得积分10
4秒前
5秒前
清梦完成签到,获得积分10
7秒前
7秒前
8秒前
科yan完成签到,获得积分10
8秒前
8秒前
Ava应助画风湖湘卷采纳,获得10
9秒前
9秒前
9秒前
10秒前
YYH发布了新的文献求助10
11秒前
阿昊完成签到,获得积分10
11秒前
传奇3应助guojingjing采纳,获得10
11秒前
ccm发布了新的文献求助10
12秒前
SONG发布了新的文献求助10
12秒前
12秒前
yinch发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
画风湖湘卷完成签到,获得积分10
15秒前
15秒前
李玲玲发布了新的文献求助10
15秒前
16秒前
调皮煎蛋发布了新的文献求助10
16秒前
刘小小星完成签到 ,获得积分10
16秒前
17秒前
17秒前
19秒前
SONG完成签到,获得积分10
19秒前
19秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114