Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 地质学 藻类
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Jin Wu,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107684-107684
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安详凡发布了新的文献求助10
刚刚
1秒前
末日的阳光完成签到 ,获得积分10
1秒前
liyuanhua发布了新的文献求助20
5秒前
桐桐应助DQY采纳,获得10
5秒前
英姑应助zyn采纳,获得10
6秒前
科研通AI2S应助末日的阳光采纳,获得10
6秒前
糖配坤关注了科研通微信公众号
11秒前
阡陌完成签到,获得积分10
13秒前
14秒前
橙子完成签到,获得积分10
14秒前
dal完成签到,获得积分10
16秒前
16秒前
脑洞疼应助科研进化中采纳,获得10
18秒前
九黎完成签到 ,获得积分10
18秒前
俊逸沅完成签到,获得积分10
23秒前
研友_5Y9775完成签到,获得积分20
25秒前
科研孙完成签到,获得积分10
26秒前
JUNJIU完成签到,获得积分10
32秒前
眼睛大樱桃完成签到,获得积分10
33秒前
糖配坤发布了新的文献求助10
34秒前
搬运工完成签到,获得积分10
35秒前
麦田的守望者完成签到,获得积分10
41秒前
婷婷发布了新的文献求助10
41秒前
坤坤完成签到,获得积分10
44秒前
董竹君完成签到,获得积分10
45秒前
Lucas应助jingzhang采纳,获得10
46秒前
49秒前
雪白凡双完成签到,获得积分10
50秒前
憨憨鱼完成签到,获得积分10
50秒前
52秒前
54秒前
55秒前
Gying发布了新的文献求助10
58秒前
塔莉娅完成签到,获得积分10
1分钟前
jingzhang发布了新的文献求助10
1分钟前
lll应助科研通管家采纳,获得10
1分钟前
lll应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357