Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 地质学 藻类
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Weiyi Jin,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:206: 107684-107684 被引量:11
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝天应助能干的向真采纳,获得10
刚刚
唐祉怡发布了新的文献求助10
刚刚
世界纷纷扰扰完成签到,获得积分10
2秒前
2秒前
I北草蜥发布了新的文献求助10
3秒前
cc完成签到,获得积分10
4秒前
李浩完成签到 ,获得积分10
4秒前
4秒前
5秒前
小昵称完成签到,获得积分10
5秒前
Gauss应助qqy413采纳,获得30
5秒前
6秒前
缥缈纲应助复杂雪一采纳,获得10
6秒前
尾随温暖完成签到,获得积分10
7秒前
8R60d8应助听语说采纳,获得10
8秒前
我是老大应助闻人华忆采纳,获得10
9秒前
细心慕凝完成签到 ,获得积分10
9秒前
lucky发布了新的文献求助10
10秒前
11秒前
11秒前
赘婿应助gdgd采纳,获得10
13秒前
WLWLW举报red求助涉嫌违规
14秒前
14秒前
14秒前
清水涧发布了新的文献求助10
15秒前
无痕完成签到,获得积分10
17秒前
波子汽水发布了新的文献求助10
17秒前
lucky完成签到,获得积分20
18秒前
19秒前
坚强鸿煊发布了新的文献求助20
19秒前
唐泽雪穗发布了新的文献求助40
20秒前
闻人华忆发布了新的文献求助10
20秒前
隐形不凡完成签到 ,获得积分10
21秒前
21秒前
黄营关注了科研通微信公众号
22秒前
23秒前
zhangyue7777发布了新的文献求助10
24秒前
无辜健柏完成签到,获得积分10
26秒前
超然度陈完成签到,获得积分10
26秒前
YY完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633382
求助须知:如何正确求助?哪些是违规求助? 4029342
关于积分的说明 12467045
捐赠科研通 3715550
什么是DOI,文献DOI怎么找? 2050235
邀请新用户注册赠送积分活动 1081814
科研通“疑难数据库(出版商)”最低求助积分说明 964080