Nondestructive determination and visualization of protein and carbohydrate concentration of Chlorella pyrenoidosa in situ using hyperspectral imaging technique

蛋白核小球藻 高光谱成像 生物量(生态学) 特征选择 生物系统 计算机科学 遥感 人工智能 生物 植物 小球藻 农学 藻类 地质学
作者
Bingquan Chu,Chengfeng Li,Shiyu Wang,Jin Wu,Xiaoli Li,Guanghua He,Gongnian Xiao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107684-107684
标识
DOI:10.1016/j.compag.2023.107684
摘要

As a new food resource approved by the National Health Commission of China, Chlorella pyrenoidosa (C. pyrenoidosa) has become commercialized in recent years with the advantages of comprehensive nutrition, especially rich in protein content. Monitoring the growth information of C. pyrenoidosa is crucial for optimizing the culture environment and increasing microalgae yield. Traditional methods for the detection of microalgae bioproducts are time-consuming and expensive. In this study, a fast visual and non-invasive method based on visible/near infrared (VIS/NIR) hyperspectral imaging (HSI) combined with chemometric methods was developed to predict the biomass, carbohydrate and protein in the cultures of C. pyrenoidosa. Twelve data preprocessing approaches, 3 feature selection methods, and 4 calibration models were used to establish and optimize the estimation models. The prediction results showed that the effects of autoscaling preprocess combined with CARS-MLR for biomass (R2p = 0.9788, RPD = 7.6503), wavelet transform (WT) combined with iRF-RFR for carbohydrate (R2p = 0.9935, RPD = 27.0385), and S-G preprocess combined with SA-RFR (R2p = 0.9677, RPD = 12.9928) for protein obtained the best performances, respectively. Moreover, visualization maps of the distribution and abundance of these components in the liquid suspension of C. pyrenoidosa were obtained based on the optimal models. This study showed that HSI technology combined with chemometric methods can accurately predict the biomass, carbohydrate, and protein contents of C. pyrenoidosa in situ, which has the potential as a fast and nondestructive approach for monitoring microalgal growth information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助10
1秒前
1秒前
1762120完成签到,获得积分10
1秒前
1秒前
llk发布了新的文献求助10
1秒前
DD给DD的求助进行了留言
2秒前
慕青应助yile采纳,获得10
4秒前
斯文败类应助Cindy采纳,获得10
7秒前
lalaland发布了新的文献求助10
7秒前
顾矜应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
哎嘿应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
隐形曼青应助冷酷向雪采纳,获得10
9秒前
李健的小迷弟应助Juan采纳,获得10
10秒前
科研通AI2S应助Foremelon采纳,获得10
11秒前
11秒前
鑫鑫完成签到 ,获得积分10
12秒前
大模型应助bobochi采纳,获得10
13秒前
Lewis完成签到,获得积分10
14秒前
谭显芝发布了新的文献求助10
15秒前
hexiaoyu完成签到,获得积分20
17秒前
17秒前
18秒前
趙途嘵生完成签到,获得积分10
19秒前
19秒前
ajin完成签到,获得积分20
21秒前
EvaHo完成签到,获得积分10
22秒前
CIBww发布了新的文献求助10
23秒前
25秒前
ajin发布了新的文献求助30
25秒前
Ben完成签到,获得积分10
27秒前
1111完成签到,获得积分10
27秒前
liu完成签到,获得积分10
28秒前
29秒前
SciGPT应助超级的抽屉采纳,获得10
29秒前
汉堡包应助慎独采纳,获得10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159888
求助须知:如何正确求助?哪些是违规求助? 2810893
关于积分的说明 7889801
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630761
版权声明 602012