Multidigraph Autocatalytic Set for Modelling Complex Systems

颂歌 常微分方程 集合(抽象数据类型) 关系(数据库) 微分方程 计算机科学 偏微分方程 自催化 应用数学 理论计算机科学 数学 数学分析 数据挖掘 生物化学 催化作用 化学 程序设计语言
作者
Nor Kamariah Kasmin,Tahir Ahmad,Amidora Idris,Siti Rahmah Awang,Mujahid Abdullahi
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (4): 912-912 被引量:1
标识
DOI:10.3390/math11040912
摘要

The motion of solid objects or even fluids can be described using mathematics. Wind movements, turbulence in the oceans, migration of birds, pandemic of diseases and all other phenomena or systems can be understood using mathematics, i.e., mathematical modelling. Some of the most common techniques used for mathematical modelling are Ordinary Differential Equation (ODE), Partial Differential Equation (PDE), Statistical Methods and Neural Network (NN). However, most of them require substantial amounts of data or an initial governing equation. Furthermore, if a system increases its complexity, namely, if the number and relation between its components increase, then the amount of data required and governing equations increase too. A graph is another well-established concept that is widely used in numerous applications in modelling some phenomena. It seldom requires data and closed form of relations. The advancement in the theory has led to the development of a new concept called autocatalytic set (ACS). In this paper, a new form of ACS, namely, multidigraph autocatalytic set (MACS) is introduced. It offers the freedom to model multi relations between components of a system once needed. The concept has produced some results in the form of theorems and in particular, its relation to the Perron–Frobenius theorem. The MACS Graph Algorithm (MACSGA) is then coded for dynamic modelling purposes. Finally, the MACSGA is implemented on the vector borne disease network system to exhibit MACS’s effectiveness and reliability. It successfully identified the two districts that were the main sources of the outbreak based on their reproduction number, R0.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Oil发布了新的文献求助10
1秒前
1秒前
爆米花应助苏silence采纳,获得10
1秒前
温馨完成签到 ,获得积分0
1秒前
小小K发布了新的文献求助10
1秒前
123456678发布了新的文献求助10
2秒前
3秒前
li发布了新的文献求助10
3秒前
3秒前
破伤疯发布了新的文献求助10
3秒前
M鹿M完成签到 ,获得积分10
4秒前
Lihuining完成签到,获得积分10
5秒前
孙成发布了新的文献求助20
5秒前
5秒前
冰冰双双完成签到,获得积分10
5秒前
丘比特应助天涯采纳,获得10
5秒前
5秒前
晨曦完成签到,获得积分10
5秒前
5秒前
6秒前
犹豫的盼兰关注了科研通微信公众号
6秒前
无极微光应助lc采纳,获得20
6秒前
Betsy完成签到 ,获得积分10
6秒前
7秒前
辛儿的毅完成签到,获得积分20
7秒前
活泼山雁发布了新的文献求助10
7秒前
端端完成签到,获得积分10
7秒前
斯文败类应助三馬采纳,获得10
7秒前
7秒前
科研通AI6应助炙热尔烟采纳,获得10
8秒前
8秒前
机械小白完成签到,获得积分10
8秒前
9秒前
guijiu完成签到,获得积分10
9秒前
沙丁鹌鹑完成签到 ,获得积分10
9秒前
Lihuining发布了新的文献求助10
9秒前
10秒前
明小丽完成签到,获得积分10
10秒前
li完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017