Multidigraph Autocatalytic Set for Modelling Complex Systems

颂歌 常微分方程 集合(抽象数据类型) 关系(数据库) 微分方程 计算机科学 偏微分方程 自催化 应用数学 理论计算机科学 数学 数学分析 数据挖掘 生物化学 催化作用 化学 程序设计语言
作者
Nor Kamariah Kasmin,Tahir Ahmad,Amidora Idris,Siti Rahmah Awang,Mujahid Abdullahi
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (4): 912-912 被引量:1
标识
DOI:10.3390/math11040912
摘要

The motion of solid objects or even fluids can be described using mathematics. Wind movements, turbulence in the oceans, migration of birds, pandemic of diseases and all other phenomena or systems can be understood using mathematics, i.e., mathematical modelling. Some of the most common techniques used for mathematical modelling are Ordinary Differential Equation (ODE), Partial Differential Equation (PDE), Statistical Methods and Neural Network (NN). However, most of them require substantial amounts of data or an initial governing equation. Furthermore, if a system increases its complexity, namely, if the number and relation between its components increase, then the amount of data required and governing equations increase too. A graph is another well-established concept that is widely used in numerous applications in modelling some phenomena. It seldom requires data and closed form of relations. The advancement in the theory has led to the development of a new concept called autocatalytic set (ACS). In this paper, a new form of ACS, namely, multidigraph autocatalytic set (MACS) is introduced. It offers the freedom to model multi relations between components of a system once needed. The concept has produced some results in the form of theorems and in particular, its relation to the Perron–Frobenius theorem. The MACS Graph Algorithm (MACSGA) is then coded for dynamic modelling purposes. Finally, the MACSGA is implemented on the vector borne disease network system to exhibit MACS’s effectiveness and reliability. It successfully identified the two districts that were the main sources of the outbreak based on their reproduction number, R0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不懂白完成签到 ,获得积分10
刚刚
1秒前
cjm发布了新的文献求助10
1秒前
Ava应助jack采纳,获得10
1秒前
Jiangpeng完成签到,获得积分10
1秒前
1秒前
lhy12345完成签到 ,获得积分10
2秒前
可爱的函函应助Evander采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
愉快的花卷完成签到,获得积分10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
醉熏的天薇完成签到,获得积分10
3秒前
3秒前
Orange应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得30
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
田様应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869