Multidigraph Autocatalytic Set for Modelling Complex Systems

颂歌 常微分方程 集合(抽象数据类型) 关系(数据库) 微分方程 计算机科学 偏微分方程 自催化 应用数学 理论计算机科学 数学 数学分析 数据挖掘 生物化学 催化作用 化学 程序设计语言
作者
Nor Kamariah Kasmin,Tahir Ahmad,Amidora Idris,Siti Rahmah Awang,Mujahid Abdullahi
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 912-912 被引量:1
标识
DOI:10.3390/math11040912
摘要

The motion of solid objects or even fluids can be described using mathematics. Wind movements, turbulence in the oceans, migration of birds, pandemic of diseases and all other phenomena or systems can be understood using mathematics, i.e., mathematical modelling. Some of the most common techniques used for mathematical modelling are Ordinary Differential Equation (ODE), Partial Differential Equation (PDE), Statistical Methods and Neural Network (NN). However, most of them require substantial amounts of data or an initial governing equation. Furthermore, if a system increases its complexity, namely, if the number and relation between its components increase, then the amount of data required and governing equations increase too. A graph is another well-established concept that is widely used in numerous applications in modelling some phenomena. It seldom requires data and closed form of relations. The advancement in the theory has led to the development of a new concept called autocatalytic set (ACS). In this paper, a new form of ACS, namely, multidigraph autocatalytic set (MACS) is introduced. It offers the freedom to model multi relations between components of a system once needed. The concept has produced some results in the form of theorems and in particular, its relation to the Perron–Frobenius theorem. The MACS Graph Algorithm (MACSGA) is then coded for dynamic modelling purposes. Finally, the MACSGA is implemented on the vector borne disease network system to exhibit MACS’s effectiveness and reliability. It successfully identified the two districts that were the main sources of the outbreak based on their reproduction number, R0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朔方姑娘吧完成签到 ,获得积分10
6秒前
7秒前
天道酬勤完成签到,获得积分10
8秒前
9秒前
leena完成签到 ,获得积分10
14秒前
煲煲煲仔饭完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
zhang完成签到 ,获得积分10
17秒前
onevip完成签到,获得积分0
17秒前
dolabmu完成签到 ,获得积分10
18秒前
laber应助科研通管家采纳,获得50
21秒前
laber应助科研通管家采纳,获得50
21秒前
风清扬应助科研通管家采纳,获得150
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
和平使命应助科研通管家采纳,获得10
21秒前
laber应助科研通管家采纳,获得50
21秒前
Akim应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
康谨完成签到 ,获得积分10
22秒前
Kiki完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
28秒前
猴王完成签到,获得积分10
31秒前
小海棉完成签到,获得积分10
31秒前
奥丁不言语完成签到 ,获得积分10
31秒前
桃花源的瓶起子完成签到 ,获得积分10
32秒前
河鲸完成签到 ,获得积分10
35秒前
善善完成签到 ,获得积分10
36秒前
快乐小菜瓜完成签到 ,获得积分10
38秒前
儒雅沛凝完成签到 ,获得积分10
38秒前
ESC惠子子子子子完成签到 ,获得积分10
40秒前
vv完成签到,获得积分10
41秒前
41秒前
sll完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助150
45秒前
47秒前
luan完成签到 ,获得积分10
48秒前
魔幻的从丹完成签到 ,获得积分10
49秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093056
求助须知:如何正确求助?哪些是违规求助? 4306804
关于积分的说明 13417225
捐赠科研通 4132917
什么是DOI,文献DOI怎么找? 2264214
邀请新用户注册赠送积分活动 1267918
关于科研通互助平台的介绍 1203651