Multidigraph Autocatalytic Set for Modelling Complex Systems

颂歌 常微分方程 集合(抽象数据类型) 关系(数据库) 微分方程 计算机科学 偏微分方程 自催化 应用数学 理论计算机科学 数学 数学分析 数据挖掘 生物化学 催化作用 化学 程序设计语言
作者
Nor Kamariah Kasmin,Tahir Ahmad,Amidora Idris,Siti Rahmah Awang,Mujahid Abdullahi
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (4): 912-912 被引量:1
标识
DOI:10.3390/math11040912
摘要

The motion of solid objects or even fluids can be described using mathematics. Wind movements, turbulence in the oceans, migration of birds, pandemic of diseases and all other phenomena or systems can be understood using mathematics, i.e., mathematical modelling. Some of the most common techniques used for mathematical modelling are Ordinary Differential Equation (ODE), Partial Differential Equation (PDE), Statistical Methods and Neural Network (NN). However, most of them require substantial amounts of data or an initial governing equation. Furthermore, if a system increases its complexity, namely, if the number and relation between its components increase, then the amount of data required and governing equations increase too. A graph is another well-established concept that is widely used in numerous applications in modelling some phenomena. It seldom requires data and closed form of relations. The advancement in the theory has led to the development of a new concept called autocatalytic set (ACS). In this paper, a new form of ACS, namely, multidigraph autocatalytic set (MACS) is introduced. It offers the freedom to model multi relations between components of a system once needed. The concept has produced some results in the form of theorems and in particular, its relation to the Perron–Frobenius theorem. The MACS Graph Algorithm (MACSGA) is then coded for dynamic modelling purposes. Finally, the MACSGA is implemented on the vector borne disease network system to exhibit MACS’s effectiveness and reliability. It successfully identified the two districts that were the main sources of the outbreak based on their reproduction number, R0.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俟天晴发布了新的文献求助10
1秒前
holland完成签到 ,获得积分10
2秒前
OuO完成签到,获得积分10
2秒前
Lucas应助一区发十篇采纳,获得10
2秒前
刘妞妞应助dl861103采纳,获得10
3秒前
顾矜应助青栀采纳,获得10
5秒前
闾丘翠琴完成签到,获得积分10
6秒前
养蚊子完成签到,获得积分10
7秒前
7秒前
善学以致用应助年轻小之采纳,获得10
8秒前
象牙板完成签到,获得积分10
11秒前
打打应助XX采纳,获得10
11秒前
Anoxra完成签到 ,获得积分10
12秒前
秋水完成签到,获得积分10
13秒前
13秒前
13秒前
依依完成签到 ,获得积分10
14秒前
CodeCraft应助山山而川采纳,获得10
14秒前
15秒前
15秒前
15秒前
浮游应助每天休息10小时采纳,获得10
15秒前
思源应助zhangxs采纳,获得10
16秒前
罗马没有马完成签到 ,获得积分10
16秒前
16秒前
77发布了新的文献求助10
17秒前
18秒前
斯文明杰发布了新的文献求助10
18秒前
haifei完成签到,获得积分10
18秒前
18秒前
天天天才发布了新的文献求助10
18秒前
秋水发布了新的文献求助10
19秒前
yellow发布了新的文献求助10
20秒前
方源完成签到,获得积分10
21秒前
科科关注了科研通微信公众号
21秒前
22秒前
23秒前
施小雨完成签到,获得积分20
24秒前
24秒前
深情安青应助李联洪采纳,获得10
24秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547536
求助须知:如何正确求助?哪些是违规求助? 3978400
关于积分的说明 12318973
捐赠科研通 3647008
什么是DOI,文献DOI怎么找? 2008488
邀请新用户注册赠送积分活动 1044026
科研通“疑难数据库(出版商)”最低求助积分说明 932617