Multidigraph Autocatalytic Set for Modelling Complex Systems

颂歌 常微分方程 集合(抽象数据类型) 关系(数据库) 微分方程 计算机科学 偏微分方程 自催化 应用数学 理论计算机科学 数学 数学分析 数据挖掘 生物化学 催化作用 化学 程序设计语言
作者
Nor Kamariah Kasmin,Tahir Ahmad,Amidora Idris,Siti Rahmah Awang,Mujahid Abdullahi
出处
期刊:Mathematics [MDPI AG]
卷期号:11 (4): 912-912 被引量:1
标识
DOI:10.3390/math11040912
摘要

The motion of solid objects or even fluids can be described using mathematics. Wind movements, turbulence in the oceans, migration of birds, pandemic of diseases and all other phenomena or systems can be understood using mathematics, i.e., mathematical modelling. Some of the most common techniques used for mathematical modelling are Ordinary Differential Equation (ODE), Partial Differential Equation (PDE), Statistical Methods and Neural Network (NN). However, most of them require substantial amounts of data or an initial governing equation. Furthermore, if a system increases its complexity, namely, if the number and relation between its components increase, then the amount of data required and governing equations increase too. A graph is another well-established concept that is widely used in numerous applications in modelling some phenomena. It seldom requires data and closed form of relations. The advancement in the theory has led to the development of a new concept called autocatalytic set (ACS). In this paper, a new form of ACS, namely, multidigraph autocatalytic set (MACS) is introduced. It offers the freedom to model multi relations between components of a system once needed. The concept has produced some results in the form of theorems and in particular, its relation to the Perron–Frobenius theorem. The MACS Graph Algorithm (MACSGA) is then coded for dynamic modelling purposes. Finally, the MACSGA is implemented on the vector borne disease network system to exhibit MACS’s effectiveness and reliability. It successfully identified the two districts that were the main sources of the outbreak based on their reproduction number, R0.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助melody采纳,获得10
刚刚
刚刚
刚刚
fd163c应助文件撤销了驳回
刚刚
柔情公蚂蚁完成签到,获得积分20
刚刚
科研通AI2S应助Yu采纳,获得10
1秒前
没所谓完成签到,获得积分10
1秒前
1秒前
剑兰先生完成签到,获得积分10
1秒前
2微恙完成签到,获得积分10
1秒前
1秒前
2秒前
李志发布了新的文献求助10
2秒前
懒骨头兄应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
liang完成签到,获得积分10
2秒前
大个应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
chem001发布了新的文献求助10
3秒前
田様应助科研通管家采纳,获得10
3秒前
guojingjing发布了新的文献求助10
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
keyan应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
彭于彦祖应助科研通管家采纳,获得30
3秒前
3秒前
Ava应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
小格子完成签到 ,获得积分10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
mumu完成签到,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629618
求助须知:如何正确求助?哪些是违规求助? 4720333
关于积分的说明 14970297
捐赠科研通 4787673
什么是DOI,文献DOI怎么找? 2556435
邀请新用户注册赠送积分活动 1517561
关于科研通互助平台的介绍 1478251