已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Li5NCl2: A Fully-Reduced, Highly-Disordered Nitride-Halide Electrolyte for Solid-State Batteries with Lithium-Metal Anodes

金属锂 锂(药物) 卤化物 电解质 阳极 氮化物 材料科学 金属 快离子导体 固态 无机化学 纳米技术 化学 电极 冶金 物理化学 图层(电子) 内分泌学 医学
作者
Victor Landgraf,Theodosios Famprikis,Joris de Leeuw,Lars J. Bannenberg,Swapna Ganapathy,Marnix Wagemaker
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:6 (3): 1661-1672 被引量:11
标识
DOI:10.1021/acsaem.2c03551
摘要

Most highly Li-conducting solid electrolytes (σRT > 10-3 S cm-1) are unstable against lithium-metal and suffer from detrimental solid-electrolyte decomposition at the lithium-metal/solid-electrolyte interface. Solid electrolytes that are stable against lithium metal thus offer a direct route to stabilize lithium-metal/solid-electrolyte interfaces, which is crucial for realizing all-solid-state batteries that outperform conventional lithium-ion batteries. In this study, we investigate Li5NCl2 (LNCl), a fully-reduced solid electrolyte that is thermodynamically stable against lithium metal. Combining experiments and simulations, we investigate the lithium diffusion mechanism, different synthetic routes, and the electrochemical stability window of LNCl. Li nuclear magnetic resonance (NMR) experiments suggest fast Li motion in LNCl, which is however locally confined and not accessible in macroscopic LNCl pellets via electrochemical impedance spectroscopy (EIS). With ab-initio calculations, we develop an in-depth understanding of Li diffusion in LNCl, which features a disorder-induced variety of different lithium jumps. We identify diffusion-limiting jumps providing an explanation for the high local diffusivity from NMR and the lower macroscopic conductivity from EIS. The fundamental understanding of the diffusion mechanism we develop herein will guide future conductivity optimizations for LNCl and may be applied to other highly-disordered fully-reduced electrolytes. We further show experimentally that the previously reported anodic limit (>2 V vs Li+/Li) is an overestimate and find the true anodic limit at 0.6 V, which is in close agreement with our first-principles calculations. Because of LNCl's stability against lithium-metal, we identify LNCl as a prospective artificial protection layer between highly-conducting solid electrolytes and strongly-reducing lithium-metal anodes and thus provide a computational investigation of the chemical compatibility of LNCl with common highly-conducting solid electrolytes (Li6PS5Cl, Li3YCl6, ...). Our results set a framework to better understand and improve highly-disordered fully-reduced electrolytes and highlight their potential in enabling lithium-metal solid-state batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小付发布了新的文献求助10
1秒前
3秒前
哎呀发布了新的文献求助10
4秒前
TLLL完成签到,获得积分10
5秒前
充电宝应助vkey采纳,获得10
7秒前
shujing发布了新的文献求助10
9秒前
汉堡包应助一个西藏采纳,获得10
9秒前
Akim应助亦hcy采纳,获得20
13秒前
科研通AI2S应助啦啦啦就好采纳,获得10
17秒前
姜戈瑞夫发布了新的文献求助10
19秒前
24秒前
王木木完成签到 ,获得积分10
27秒前
28秒前
LiangRen完成签到 ,获得积分10
29秒前
lucy完成签到,获得积分10
30秒前
koi完成签到 ,获得积分10
31秒前
闲鱼耶鹤完成签到 ,获得积分10
32秒前
亦hcy发布了新的文献求助20
34秒前
34秒前
CodeCraft应助姜戈瑞夫采纳,获得10
37秒前
ym发布了新的文献求助20
41秒前
光亮如彤完成签到,获得积分10
41秒前
43秒前
真实的依波完成签到,获得积分10
44秒前
check003完成签到,获得积分10
49秒前
zhangzhangzhang完成签到,获得积分10
51秒前
香蕉觅云应助亦hcy采纳,获得20
51秒前
姜戈瑞夫完成签到,获得积分10
52秒前
59秒前
1分钟前
1分钟前
vkey发布了新的文献求助10
1分钟前
1分钟前
精神稳定完成签到,获得积分20
1分钟前
天天快乐应助不喜采纳,获得10
1分钟前
1分钟前
jiang发布了新的文献求助20
1分钟前
慕青应助qiqi1111采纳,获得10
1分钟前
1分钟前
任元元完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356411
求助须知:如何正确求助?哪些是违规求助? 4488209
关于积分的说明 13971794
捐赠科研通 4389030
什么是DOI,文献DOI怎么找? 2411357
邀请新用户注册赠送积分活动 1403907
关于科研通互助平台的介绍 1377771