亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel nomogram for predicting microvascular invasion in hepatocellular carcinoma

列线图 医学 肝细胞癌 内科学 逻辑回归 队列 肝硬化 肿瘤科 肝切除术 单变量 多元分析 外科 多元统计 切除术 统计 数学
作者
Yuan Chang,Tianyu Guo,Bo Zhu,Yefu Liu
出处
期刊:Annals of Hepatology [Elsevier]
卷期号:28 (6): 101136-101136 被引量:4
标识
DOI:10.1016/j.aohep.2023.101136
摘要

In hepatocellular carcinoma (HCC), the prognosis of patients with microvascular invasion (MVI) is poor. Therefore, in this study, we established and evaluated the performance of a novel nomogram to predict MVI in patients with HCC. We retrospectively obtained clinical data of 497 patients with HCC who underwent hepatectomy at Liaoning Cancer Hospital from November 1, 2018, to November 4, 2021. The patients (n = 497) were randomized in a 7:3 ratio into the training cohort (TC, n = 349) and the validation cohort (VC, n = 148). We performed LASSO and univariate as well as multivariate logistic regression analyses on patients in the TC to identify factors independently predicting MVI. Preoperative FIB-4, AFU, AFP levels, liver cirrhosis, and non-smooth tumor margin were independent risk factors for preoperative MVI prediction. The C-index of the TC, VC, and the entire cohort was 0.846, 0.786, and 0.829, respectively. The calibration curves demonstrated the outstanding agreement between predicted MVI incidences by our model and the actual MVI risk. DCA confirmed the significance of our predictive model in clinical settings. The Kaplan–Meier survival curve showed that the recurrence-free survival and overall survival of patients in the high-MVI risk group were poor compared to those in the low-MVI risk group. We constructed and evaluated the performance of the novel nomogram for predicting MVI risk. Our predictive model could adequately predict MVI risk and aid clinicians in selecting appropriate therapeutic strategies for patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤迎雪飘完成签到,获得积分10
2秒前
机智的夜云完成签到,获得积分10
6秒前
15秒前
简单的凡儿完成签到,获得积分10
21秒前
BowieHuang应助科研通管家采纳,获得10
54秒前
58秒前
1分钟前
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
拼搏姒发布了新的文献求助10
1分钟前
Henvy完成签到,获得积分10
1分钟前
江瑟瑟完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
WerWu完成签到,获得积分0
2分钟前
芽衣完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
hll发布了新的文献求助50
3分钟前
hll完成签到,获得积分10
3分钟前
shhoing应助hu采纳,获得10
3分钟前
盛事不朽完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
玛琳卡迪马完成签到,获得积分10
4分钟前
Chi_bio完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
knight7m完成签到 ,获得积分10
5分钟前
卓天宇完成签到,获得积分0
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582525
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500225
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938