Morphology, sucrose metabolism and gene network reveal the molecular mechanism of seed fiber development in poplar

蔗糖 植物 蔗糖合成酶 转化酶 生物 MYB公司 拟南芥 毛状体 新陈代谢 生物化学 基因 转录因子 突变体
作者
Xiong Yang,Tianyun Zhao,Pian Rao,Ning Yang,Guolei Li,Liming Jia,Xinmin An,Zhong Chen
出处
期刊:International Journal of Biological Macromolecules [Elsevier BV]
卷期号:246: 125633-125633 被引量:7
标识
DOI:10.1016/j.ijbiomac.2023.125633
摘要

Poplar is an important tree species for ecological protection, wood production, bioenergy and urban greening; it has been widely planted worldwide. However, the catkin fibers produced by female poplars can cause environmental pollution and safety hazards during spring. This study focused on Populus tomentosa, and revealed the sucrose metabolism regulatory mechanism of catkin fibers development from morphological, physiological and molecular aspects. Paraffin section suggested that poplar catkin fibers were not seed hairs and produced from the epidermal cells of funicle and placenta. Sucrose degradation via invertase and sucrose synthase played the dominant role during poplar catkin fibers development. The expression patterns revealed that sucrose metabolism-related genes played important roles during catkin fibers development. Y1H analysis indicated that there was a potential interaction between sucrose synthase 2 (PtoSUS2)/vacuolar invertase 3 (PtoVIN3) and trichome-regulating MYB transcription factors in poplar. Finally, the two key genes, PtoSUS2 and PtoVIN3, had roles in Arabidopsis trichome density, indicating that sucrose metabolism is important in poplar catkin fibers development. This study is not only helpful for clarifying the mechanism of sucrose regulation during trichome development in perennial woody plants, but also establishes a foundation to solve poplar catkin fibers pollution through genetic engineering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sylvia完成签到,获得积分10
刚刚
00完成签到,获得积分20
2秒前
务实的菓完成签到 ,获得积分10
2秒前
吕健发布了新的文献求助10
3秒前
3秒前
果心纯完成签到,获得积分10
4秒前
4秒前
猜猜关注了科研通微信公众号
5秒前
Lin发布了新的文献求助10
5秒前
6秒前
自觉的火龙果完成签到,获得积分10
6秒前
十三同学完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
Lin完成签到,获得积分10
10秒前
样样子发布了新的文献求助10
11秒前
ll200207发布了新的文献求助10
13秒前
香蕉觅云应助奮斗采纳,获得10
14秒前
今后应助keyan采纳,获得10
14秒前
15秒前
15秒前
打打应助夜阑听风雨采纳,获得10
15秒前
00发布了新的文献求助10
16秒前
芝士完成签到 ,获得积分10
17秒前
uuh完成签到,获得积分10
17秒前
仁者完成签到,获得积分10
18秒前
可爱的函函应助达叔采纳,获得10
19秒前
19秒前
19秒前
22秒前
23秒前
24秒前
24秒前
hlh应助冷傲山彤采纳,获得10
24秒前
草莓发布了新的文献求助20
24秒前
xxx发布了新的文献求助10
24秒前
24秒前
领导范儿应助江峰采纳,获得10
25秒前
打打应助以山涧为湫采纳,获得30
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769645
求助须知:如何正确求助?哪些是违规求助? 3314713
关于积分的说明 10173349
捐赠科研通 3030002
什么是DOI,文献DOI怎么找? 1662548
邀请新用户注册赠送积分活动 795036
科研通“疑难数据库(出版商)”最低求助积分说明 756500