Research on nondestructive detection of pine nut quality based on terahertz imaging

太赫兹辐射 人工智能 计算机科学 模式识别(心理学) 支持向量机 多光谱图像 线性判别分析 核(代数) 无损检测 数学 材料科学 计算机视觉 物理 光电子学 量子力学 组合数学
作者
Jun Hu,Peng Qiao,Liang Yang,Haohao Lv,Hongyang Shi,Yong He,Yande Liu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:134: 104798-104798 被引量:2
标识
DOI:10.1016/j.infrared.2023.104798
摘要

Pine nuts are of great nutritional and medicinal value, but they cannot avoid such defects as mildew and insect-eating during storage. Because of their hard shells, the internal quality detection of pine nuts is a major problem for industrial sorting. For this reason, it is of great significance to carry out rapid nondestructive detection of the internal quality of pine nuts. In this paper, a rapid and nondestructive detection of pine nuts for mildew and plumpness based on terahertz transmission imaging technology was carried out. Firstly, the terahertz transmission images of pine nut samples were acquired and the terahertz spectral signals of four different regions of interest were extracted for analysis. Secondly, in order to reduce the interference of external environment on the acquisition of terahertz spectra, the terahertz spectra were pre-processedby several methods, such as ALS, AirPLS, BEADS and SNV + Detrending, and then three qualitative discriminant models, namely, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and XGBoost integration learning, were established respectively to explore the optimal qualitative discriminant model for the detection of pine nut quality. Finally, the terahertz transmission image of pine nuts was subjected to image processing. The main feature gamut extraction combined with channel separation strategy were adopted. and then the automatic threshold segmentation algorithm was applied to perform binary threshold segmentation on the separated image, thus the plumpness of the pine nuts was calculated by calculating the ratio of the pixel points of the shell and the kernel. The prediction set of BEADS + XGBoost model was established after data preprocessing with the optimal effect and the accuracy of 98.61%. The acquired terahertz images of pine nuts were extracted by the main feature gamut and the images of channel B were extracted by using channel separation. Finally, the automatic threshold segmentation of channel B was performed by using the maximum one-dimensional entropy, which can well realize the visual detection of the inner shell kernel of pine nuts. Terahertz imaging technology can achieve rapid and nondestructive detection of pine mildew as well as pine nut plumpness. This study provides a new rapid and nondestructive effective method for pine nut quality detection, which can provide technical reference for other shelled nut quality detection and has significant practical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助激昂的海蓝采纳,获得10
刚刚
量子星尘发布了新的文献求助30
1秒前
小宝爸爸完成签到,获得积分10
1秒前
1秒前
大模型应助arT采纳,获得10
2秒前
科研小白应助Strongly采纳,获得10
2秒前
Chloe发布了新的文献求助10
2秒前
liangqiwei发布了新的文献求助10
2秒前
Lee完成签到,获得积分10
2秒前
yanlonghappy发布了新的文献求助10
2秒前
22完成签到,获得积分20
3秒前
高子懿发布了新的文献求助10
3秒前
3秒前
Desperado发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
蓝风铃完成签到 ,获得积分10
4秒前
4秒前
迷人樱发布了新的文献求助10
4秒前
ljy完成签到,获得积分10
4秒前
小宝爸爸发布了新的文献求助10
4秒前
Sissi发布了新的文献求助10
4秒前
cccccc发布了新的文献求助10
5秒前
勤奋成风发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
宇宙拿铁完成签到 ,获得积分10
5秒前
GH完成签到,获得积分10
5秒前
6秒前
九局下半发布了新的文献求助10
6秒前
xiaotianli完成签到,获得积分10
6秒前
长度2到完成签到,获得积分10
6秒前
6秒前
李爱国应助傻傻的凌寒采纳,获得10
7秒前
7秒前
RJ应助toxin37采纳,获得10
8秒前
8秒前
8秒前
长孙明雪完成签到,获得积分10
9秒前
优秀的邪欢完成签到 ,获得积分10
9秒前
9秒前
万圣夜完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476