Research on nondestructive detection of pine nut quality based on terahertz imaging

太赫兹辐射 人工智能 计算机科学 模式识别(心理学) 支持向量机 多光谱图像 线性判别分析 核(代数) 无损检测 数学 材料科学 计算机视觉 物理 光电子学 量子力学 组合数学
作者
Jun Hu,Peng Qiao,Liang Yang,Haohao Lv,Hongyang Shi,Yong He,Yande Liu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:134: 104798-104798 被引量:2
标识
DOI:10.1016/j.infrared.2023.104798
摘要

Pine nuts are of great nutritional and medicinal value, but they cannot avoid such defects as mildew and insect-eating during storage. Because of their hard shells, the internal quality detection of pine nuts is a major problem for industrial sorting. For this reason, it is of great significance to carry out rapid nondestructive detection of the internal quality of pine nuts. In this paper, a rapid and nondestructive detection of pine nuts for mildew and plumpness based on terahertz transmission imaging technology was carried out. Firstly, the terahertz transmission images of pine nut samples were acquired and the terahertz spectral signals of four different regions of interest were extracted for analysis. Secondly, in order to reduce the interference of external environment on the acquisition of terahertz spectra, the terahertz spectra were pre-processedby several methods, such as ALS, AirPLS, BEADS and SNV + Detrending, and then three qualitative discriminant models, namely, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and XGBoost integration learning, were established respectively to explore the optimal qualitative discriminant model for the detection of pine nut quality. Finally, the terahertz transmission image of pine nuts was subjected to image processing. The main feature gamut extraction combined with channel separation strategy were adopted. and then the automatic threshold segmentation algorithm was applied to perform binary threshold segmentation on the separated image, thus the plumpness of the pine nuts was calculated by calculating the ratio of the pixel points of the shell and the kernel. The prediction set of BEADS + XGBoost model was established after data preprocessing with the optimal effect and the accuracy of 98.61%. The acquired terahertz images of pine nuts were extracted by the main feature gamut and the images of channel B were extracted by using channel separation. Finally, the automatic threshold segmentation of channel B was performed by using the maximum one-dimensional entropy, which can well realize the visual detection of the inner shell kernel of pine nuts. Terahertz imaging technology can achieve rapid and nondestructive detection of pine mildew as well as pine nut plumpness. This study provides a new rapid and nondestructive effective method for pine nut quality detection, which can provide technical reference for other shelled nut quality detection and has significant practical value.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
4秒前
852应助啊哈哈哈采纳,获得10
5秒前
gexiaoyang发布了新的文献求助30
5秒前
6秒前
orixero应助LLL采纳,获得10
8秒前
萤火未央完成签到,获得积分10
8秒前
HP发布了新的文献求助10
8秒前
喜悦寒凝完成签到 ,获得积分10
9秒前
99668完成签到,获得积分10
10秒前
Adzuki0812发布了新的文献求助10
10秒前
Huan发布了新的文献求助10
11秒前
luxia完成签到 ,获得积分10
14秒前
15秒前
15秒前
cozy111完成签到,获得积分10
18秒前
科研通AI6应助梦影采纳,获得10
19秒前
段启瑞完成签到,获得积分10
20秒前
20秒前
colors发布了新的文献求助10
20秒前
1111发布了新的文献求助10
21秒前
21秒前
炙热萝发布了新的文献求助10
21秒前
21秒前
科研通AI2S应助羰醛采纳,获得10
22秒前
英姑应助Lemonade采纳,获得10
23秒前
24秒前
26秒前
26秒前
科目三应助Satan采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
柠檬味de_完成签到 ,获得积分10
27秒前
27秒前
cauwindwill完成签到,获得积分10
28秒前
28秒前
JamesPei应助快乐的柚子采纳,获得10
30秒前
白日幻想家完成签到 ,获得积分10
30秒前
27完成签到 ,获得积分10
31秒前
HK发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537662
求助须知:如何正确求助?哪些是违规求助? 4625146
关于积分的说明 14594680
捐赠科研通 4565616
什么是DOI,文献DOI怎么找? 2502535
邀请新用户注册赠送积分活动 1481073
关于科研通互助平台的介绍 1452288