亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on nondestructive detection of pine nut quality based on terahertz imaging

太赫兹辐射 人工智能 计算机科学 模式识别(心理学) 支持向量机 多光谱图像 线性判别分析 核(代数) 无损检测 数学 材料科学 计算机视觉 物理 光电子学 量子力学 组合数学
作者
Jun Hu,Peng Qiao,Liang Yang,Haohao Lv,Hongyang Shi,Yong He,Yande Liu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:134: 104798-104798 被引量:2
标识
DOI:10.1016/j.infrared.2023.104798
摘要

Pine nuts are of great nutritional and medicinal value, but they cannot avoid such defects as mildew and insect-eating during storage. Because of their hard shells, the internal quality detection of pine nuts is a major problem for industrial sorting. For this reason, it is of great significance to carry out rapid nondestructive detection of the internal quality of pine nuts. In this paper, a rapid and nondestructive detection of pine nuts for mildew and plumpness based on terahertz transmission imaging technology was carried out. Firstly, the terahertz transmission images of pine nut samples were acquired and the terahertz spectral signals of four different regions of interest were extracted for analysis. Secondly, in order to reduce the interference of external environment on the acquisition of terahertz spectra, the terahertz spectra were pre-processedby several methods, such as ALS, AirPLS, BEADS and SNV + Detrending, and then three qualitative discriminant models, namely, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and XGBoost integration learning, were established respectively to explore the optimal qualitative discriminant model for the detection of pine nut quality. Finally, the terahertz transmission image of pine nuts was subjected to image processing. The main feature gamut extraction combined with channel separation strategy were adopted. and then the automatic threshold segmentation algorithm was applied to perform binary threshold segmentation on the separated image, thus the plumpness of the pine nuts was calculated by calculating the ratio of the pixel points of the shell and the kernel. The prediction set of BEADS + XGBoost model was established after data preprocessing with the optimal effect and the accuracy of 98.61%. The acquired terahertz images of pine nuts were extracted by the main feature gamut and the images of channel B were extracted by using channel separation. Finally, the automatic threshold segmentation of channel B was performed by using the maximum one-dimensional entropy, which can well realize the visual detection of the inner shell kernel of pine nuts. Terahertz imaging technology can achieve rapid and nondestructive detection of pine mildew as well as pine nut plumpness. This study provides a new rapid and nondestructive effective method for pine nut quality detection, which can provide technical reference for other shelled nut quality detection and has significant practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忆_完成签到 ,获得积分10
6秒前
善学以致用应助云是采纳,获得10
7秒前
冲浪男孩226完成签到,获得积分10
8秒前
君子兰完成签到,获得积分10
11秒前
11秒前
orixero应助善良的绮山采纳,获得30
12秒前
14秒前
欢呼宛秋完成签到,获得积分10
15秒前
Tendency完成签到 ,获得积分10
16秒前
21秒前
24秒前
25秒前
云是发布了新的文献求助10
25秒前
贪玩的谷芹完成签到 ,获得积分10
25秒前
夏蓉完成签到,获得积分10
26秒前
Dirsch应助无辜绿竹采纳,获得10
28秒前
RRRRR1发布了新的文献求助10
29秒前
31秒前
可爱的函函应助LL采纳,获得10
32秒前
35秒前
38秒前
风里追兔完成签到,获得积分20
38秒前
糊涂的小王完成签到,获得积分10
38秒前
科研通AI6应助稳重傲白采纳,获得10
38秒前
隐形曼青应助RRRRR1采纳,获得10
42秒前
风里追兔发布了新的文献求助30
43秒前
47秒前
传奇3应助科研通管家采纳,获得10
49秒前
Perry应助科研通管家采纳,获得10
49秒前
嘻嘻哈哈应助科研通管家采纳,获得10
49秒前
云是完成签到,获得积分10
50秒前
DengVV完成签到,获得积分10
51秒前
51秒前
会飞的流氓兔完成签到 ,获得积分10
52秒前
可久斯基完成签到 ,获得积分10
53秒前
傲娇的觅翠完成签到,获得积分10
54秒前
我是老大应助hwen1998采纳,获得10
55秒前
不器完成签到 ,获得积分10
56秒前
我吃小饼干完成签到 ,获得积分10
57秒前
jfz完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5323299
求助须知:如何正确求助?哪些是违规求助? 4464716
关于积分的说明 13893373
捐赠科研通 4356192
什么是DOI,文献DOI怎么找? 2392626
邀请新用户注册赠送积分活动 1386209
关于科研通互助平台的介绍 1356184