Research on nondestructive detection of pine nut quality based on terahertz imaging

太赫兹辐射 人工智能 计算机科学 模式识别(心理学) 支持向量机 多光谱图像 线性判别分析 核(代数) 无损检测 数学 材料科学 计算机视觉 物理 光电子学 组合数学 量子力学
作者
Jun Hu,Peng Qiao,Liang Yang,Haohao Lv,Hongyang Shi,Yong He,Yande Liu
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:134: 104798-104798 被引量:2
标识
DOI:10.1016/j.infrared.2023.104798
摘要

Pine nuts are of great nutritional and medicinal value, but they cannot avoid such defects as mildew and insect-eating during storage. Because of their hard shells, the internal quality detection of pine nuts is a major problem for industrial sorting. For this reason, it is of great significance to carry out rapid nondestructive detection of the internal quality of pine nuts. In this paper, a rapid and nondestructive detection of pine nuts for mildew and plumpness based on terahertz transmission imaging technology was carried out. Firstly, the terahertz transmission images of pine nut samples were acquired and the terahertz spectral signals of four different regions of interest were extracted for analysis. Secondly, in order to reduce the interference of external environment on the acquisition of terahertz spectra, the terahertz spectra were pre-processedby several methods, such as ALS, AirPLS, BEADS and SNV + Detrending, and then three qualitative discriminant models, namely, Linear Discriminant Analysis (LDA), Support Vector Machine (SVM) and XGBoost integration learning, were established respectively to explore the optimal qualitative discriminant model for the detection of pine nut quality. Finally, the terahertz transmission image of pine nuts was subjected to image processing. The main feature gamut extraction combined with channel separation strategy were adopted. and then the automatic threshold segmentation algorithm was applied to perform binary threshold segmentation on the separated image, thus the plumpness of the pine nuts was calculated by calculating the ratio of the pixel points of the shell and the kernel. The prediction set of BEADS + XGBoost model was established after data preprocessing with the optimal effect and the accuracy of 98.61%. The acquired terahertz images of pine nuts were extracted by the main feature gamut and the images of channel B were extracted by using channel separation. Finally, the automatic threshold segmentation of channel B was performed by using the maximum one-dimensional entropy, which can well realize the visual detection of the inner shell kernel of pine nuts. Terahertz imaging technology can achieve rapid and nondestructive detection of pine mildew as well as pine nut plumpness. This study provides a new rapid and nondestructive effective method for pine nut quality detection, which can provide technical reference for other shelled nut quality detection and has significant practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅浅发布了新的文献求助10
刚刚
刚刚
2秒前
小马甲应助爱笑小蘑菇采纳,获得30
2秒前
eny发布了新的文献求助10
2秒前
璇儿发布了新的文献求助10
3秒前
5秒前
6秒前
6秒前
6秒前
xutong de发布了新的文献求助10
7秒前
丶氵一生里完成签到,获得积分10
8秒前
wxl发布了新的文献求助10
9秒前
852应助璇儿采纳,获得10
9秒前
10秒前
10秒前
annicaker发布了新的文献求助10
11秒前
ZL完成签到,获得积分10
11秒前
dl关闭了dl文献求助
11秒前
orixero应助eny采纳,获得10
14秒前
00完成签到 ,获得积分10
15秒前
lyz666发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
20秒前
坚强的广山应助iNk采纳,获得200
20秒前
热情的听露完成签到,获得积分10
21秒前
22秒前
22秒前
穆紫应助money采纳,获得10
22秒前
穆紫应助研友_kngjrL采纳,获得10
23秒前
稳重的鼠标完成签到,获得积分10
23秒前
林源枫完成签到,获得积分10
23秒前
aaa发布了新的文献求助10
23秒前
24秒前
pot发布了新的文献求助10
24秒前
独角兽完成签到 ,获得积分10
25秒前
Loscipy发布了新的文献求助10
26秒前
茜134发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124786
求助须知:如何正确求助?哪些是违规求助? 2775057
关于积分的说明 7725364
捐赠科研通 2430615
什么是DOI,文献DOI怎么找? 1291245
科研通“疑难数据库(出版商)”最低求助积分说明 622091
版权声明 600323