已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrated wildfire danger models and factors: A review

文档 计算机科学 过程(计算) 斯科普斯 可预测性 概率逻辑 地理信息系统 数据科学 风险分析(工程) 人工智能 地理 遥感 统计 数学 梅德林 政治学 法学 医学 程序设计语言 操作系统
作者
Ioannis Zacharakis,Vassiliοs A. Tsihrintzis
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:899: 165704-165704 被引量:11
标识
DOI:10.1016/j.scitotenv.2023.165704
摘要

Wildfires have been systematically studied from the early 1950s, with significant progress in the applied computational methodologies during the 21st century. However, modern methods are barely adopted by administrative authorities, globally, especially those considering probabilistic models concerning human-caused fires. An exhaustive review on wildfire danger studies has not yet been performed. Therefore, the present review aims at collecting and analyzing integrated modeling approaches in estimating forest fire danger, examining the driving factors, and evaluating their influence on fire occurrence. The main objective is to propose the top performing methods and the most important risk factors for the development of an Integrated Wildfire Danger Risk System (IWDRS). Studies were classified based on the applied technique, i.e., geographic information systems, remote sensing, statistics, machine learning, simulation modeling and miscellaneous techniques. The conclusions of each study concerning the relative importance of model input variables are also reported. Online search engines such as 'Scopus', 'Google Scholar', 'WorldWideScience', 'ScienceDirect' and 'ResearchGate' were used in relevant literature searches published in scientific journals, manuals and technical documentation. A total of 230 studies were gathered with a selected subset being evaluated in a meta-analysis process. Machine learning techniques outperform average classic statistics, although their predictability relies heavily on the quantity and the quality of the input data. Geographic information systems and remote sensing are considered valuable yet supplementary tools. Modeling techniques apply best to fire behavior prediction, while other techniques referenced in the current review are potentially useful but further investigation is needed. In conclusion, wildfire danger is a function of seven thematic groups of variables: meteorology, vegetation, topography, hydrology, socio-economy, land use and climate. Ninety-five explanatory drivers are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
菜鸡5号完成签到,获得积分10
4秒前
lizeyu完成签到,获得积分10
4秒前
6秒前
余三心完成签到,获得积分10
7秒前
8秒前
爆米花应助Dasha采纳,获得30
14秒前
怡然的一凤完成签到 ,获得积分10
14秒前
14秒前
Allen完成签到,获得积分10
21秒前
21秒前
余三心发布了新的文献求助10
21秒前
23秒前
66完成签到,获得积分10
26秒前
26秒前
26秒前
28秒前
冯冯完成签到 ,获得积分10
31秒前
31秒前
KXC发布了新的文献求助10
31秒前
研友_VZG7GZ应助菠萝披萨采纳,获得10
32秒前
33秒前
贪玩夜玉完成签到 ,获得积分10
37秒前
生动邴完成签到 ,获得积分10
39秒前
鸡蛋饼卷发布了新的文献求助10
39秒前
41秒前
丘比特应助timekeeper1307采纳,获得10
41秒前
小马甲应助流星采纳,获得10
44秒前
46秒前
KXC完成签到,获得积分10
48秒前
51秒前
yyyalles应助zou采纳,获得10
53秒前
子衿青青发布了新的文献求助10
54秒前
DT发布了新的文献求助10
56秒前
斯文棒球完成签到 ,获得积分10
58秒前
科研通AI2S应助王王采纳,获得10
1分钟前
1分钟前
LZH完成签到,获得积分20
1分钟前
LF完成签到,获得积分10
1分钟前
无花果应助北栀采纳,获得10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142377
求助须知:如何正确求助?哪些是违规求助? 2793285
关于积分的说明 7806265
捐赠科研通 2449541
什么是DOI,文献DOI怎么找? 1303349
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300