材料科学
光学
显微镜
生物成像
极化(电化学)
光电子学
纳米技术
物理
化学
荧光
物理化学
作者
Trevon Badloe,Yeseul Kim,Joohoon Kim,Hyemi Park,Aleksandr Barulin,Yen N. Diep,Hansang Cho,Wonsik Kim,Young‐Ki Kim,Inki Kim,Junsuk Rho
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-07-25
卷期号:17 (15): 14678-14685
被引量:50
标识
DOI:10.1021/acsnano.3c02471
摘要
The imaging of microscopic biological samples faces numerous difficulties due to their small feature sizes and low-amplitude contrast. Metalenses have shown great promise in bioimaging as they have access to the complete complex information, which, alongside their extremely small and compact footprint and potential to integrate multiple functionalities into a single device, allow for miniaturized microscopy with exceptional features. Here, we design and experimentally realize a dual-mode metalens integrated with a liquid crystal cell that can be electrically switched between bright-field and edge-enhanced imaging on the millisecond scale. We combine the concepts of geometric and propagation phase to design the dual-mode metalens and physically encode the required phase profiles using hydrogenated amorphous silicon for operation at visible wavelengths. The two distinct metalens phase profiles include (1) a conventional hyperbolic metalens for bright-field imaging and (2) a spiral metalens with a topological charge of +1 for edge-enhanced imaging. We demonstrate the focusing and vortex generation ability of the metalens under different states of circular polarization and prove its use for biological imaging. This work proves a method for in vivo observation and monitoring of the cell response and drug screening within a compact form factor.
科研通智能强力驱动
Strongly Powered by AbleSci AI