亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nearest neighbor-based approaches for multi-instance multi-label classification

k-最近邻算法 计算机科学 人工智能 机器学习 转化(遗传学) 相关性(法律) 数据挖掘 功能(生物学) 模式识别(心理学) 政治学 生物化学 进化生物学 生物 基因 化学 法学
作者
Amelia Zafra,Eva Gibaja
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:232: 120876-120876 被引量:2
标识
DOI:10.1016/j.eswa.2023.120876
摘要

Nearest neighbor-based methods are classic techniques that, due to their efficiency, still are widely used today. However, they have not been broadly applied to solve the multi-instance multi-label (MIML) problem, a supervised learning paradigm that combines multi-instance (MI) and multi-label (ML) learning. This work presents new neighbor-based approaches for solving MIML problems. On the one hand, MIML data are transformed into ML data and ML nearest neighbor algorithms are used. On the other hand, algorithms that directly address MIML data and use a bag-based distance are proposed. A comprehensive study and an overall comparison have been conducted to study the performance of these methods using different configurations. Experiments included 16 datasets and 8 performance metrics. The results and statistical tests showed that the problem transformation applied and the distance function used impacted the performance and that the approaches that do not transform the problem obtained the best predictive results. Furthermore, most of the proposed algorithms outperformed the MIMLkNN algorithm, the state-of-art algorithm for MIML learning based on nearest-neighbor. Therefore, the relevance and capabilities of neighbor-based approaches to obtain competitive results in MIML learning are shown. Finally, all the algorithms developed in this paper have been included in the MIML library to facilitate the comparison with other future proposals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明怜阳发布了新的文献求助10
刚刚
科研通AI2S应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
涛1完成签到 ,获得积分10
1分钟前
2分钟前
xt发布了新的文献求助30
2分钟前
3分钟前
JoeyJin完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
BowieHuang应助无风风采纳,获得10
4分钟前
4分钟前
5分钟前
无极微光应助无风风采纳,获得20
5分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
BowieHuang应助科研通管家采纳,获得10
6分钟前
6分钟前
7分钟前
TonyLee完成签到,获得积分10
7分钟前
xt完成签到,获得积分10
7分钟前
8分钟前
CodeCraft应助科研通管家采纳,获得10
8分钟前
BowieHuang应助科研通管家采纳,获得10
8分钟前
BowieHuang应助科研通管家采纳,获得10
8分钟前
阿尔法贝塔完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
nbing完成签到,获得积分10
9分钟前
9分钟前
9分钟前
9分钟前
幽默白秋发布了新的文献求助10
9分钟前
幽默白秋发布了新的文献求助10
9分钟前
幽默白秋发布了新的文献求助10
9分钟前
幽默白秋发布了新的文献求助10
9分钟前
幽默白秋发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590568
求助须知:如何正确求助?哪些是违规求助? 4674814
关于积分的说明 14795358
捐赠科研通 4633182
什么是DOI,文献DOI怎么找? 2532808
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468723