Nearest neighbor-based approaches for multi-instance multi-label classification

k-最近邻算法 计算机科学 人工智能 机器学习 转化(遗传学) 相关性(法律) 数据挖掘 功能(生物学) 模式识别(心理学) 政治学 生物化学 进化生物学 生物 基因 化学 法学
作者
Amelia Zafra,Eva Gibaja
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:232: 120876-120876 被引量:2
标识
DOI:10.1016/j.eswa.2023.120876
摘要

Nearest neighbor-based methods are classic techniques that, due to their efficiency, still are widely used today. However, they have not been broadly applied to solve the multi-instance multi-label (MIML) problem, a supervised learning paradigm that combines multi-instance (MI) and multi-label (ML) learning. This work presents new neighbor-based approaches for solving MIML problems. On the one hand, MIML data are transformed into ML data and ML nearest neighbor algorithms are used. On the other hand, algorithms that directly address MIML data and use a bag-based distance are proposed. A comprehensive study and an overall comparison have been conducted to study the performance of these methods using different configurations. Experiments included 16 datasets and 8 performance metrics. The results and statistical tests showed that the problem transformation applied and the distance function used impacted the performance and that the approaches that do not transform the problem obtained the best predictive results. Furthermore, most of the proposed algorithms outperformed the MIMLkNN algorithm, the state-of-art algorithm for MIML learning based on nearest-neighbor. Therefore, the relevance and capabilities of neighbor-based approaches to obtain competitive results in MIML learning are shown. Finally, all the algorithms developed in this paper have been included in the MIML library to facilitate the comparison with other future proposals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橙子发布了新的文献求助10
刚刚
颜琀樱发布了新的文献求助10
1秒前
DNA甲基转移酶完成签到,获得积分10
1秒前
BowieHuang应助好好好采纳,获得10
1秒前
2秒前
by完成签到 ,获得积分20
2秒前
研友_EZ1KkL完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
0009987完成签到,获得积分10
4秒前
4秒前
ding应助月不笑采纳,获得10
4秒前
suohaiyun发布了新的文献求助10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
小宋发布了新的文献求助10
5秒前
大个应助科研通管家采纳,获得30
5秒前
吃人陈发布了新的文献求助10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
liuchengrui应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
kagaminelen完成签到,获得积分10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
BowieHuang应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
mengtingmei应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791