Nearest neighbor-based approaches for multi-instance multi-label classification

k-最近邻算法 计算机科学 人工智能 机器学习 转化(遗传学) 相关性(法律) 数据挖掘 功能(生物学) 模式识别(心理学) 政治学 生物化学 进化生物学 生物 基因 化学 法学
作者
Amelia Zafra,Eva Gibaja
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:232: 120876-120876 被引量:2
标识
DOI:10.1016/j.eswa.2023.120876
摘要

Nearest neighbor-based methods are classic techniques that, due to their efficiency, still are widely used today. However, they have not been broadly applied to solve the multi-instance multi-label (MIML) problem, a supervised learning paradigm that combines multi-instance (MI) and multi-label (ML) learning. This work presents new neighbor-based approaches for solving MIML problems. On the one hand, MIML data are transformed into ML data and ML nearest neighbor algorithms are used. On the other hand, algorithms that directly address MIML data and use a bag-based distance are proposed. A comprehensive study and an overall comparison have been conducted to study the performance of these methods using different configurations. Experiments included 16 datasets and 8 performance metrics. The results and statistical tests showed that the problem transformation applied and the distance function used impacted the performance and that the approaches that do not transform the problem obtained the best predictive results. Furthermore, most of the proposed algorithms outperformed the MIMLkNN algorithm, the state-of-art algorithm for MIML learning based on nearest-neighbor. Therefore, the relevance and capabilities of neighbor-based approaches to obtain competitive results in MIML learning are shown. Finally, all the algorithms developed in this paper have been included in the MIML library to facilitate the comparison with other future proposals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
积极钧完成签到,获得积分10
刚刚
行为艺术家完成签到,获得积分10
刚刚
1秒前
波尔完成签到,获得积分20
1秒前
劲秉应助111采纳,获得20
2秒前
3秒前
ZHIXIANGWENG发布了新的文献求助10
3秒前
研友_8QxN1Z发布了新的文献求助10
4秒前
踏实的求真完成签到,获得积分10
4秒前
重要的向露完成签到,获得积分10
5秒前
swallow完成签到,获得积分10
6秒前
哦莫卡卡完成签到,获得积分10
6秒前
顾矜应助hkh采纳,获得10
6秒前
bkagyin应助早早采纳,获得10
7秒前
7秒前
AKLIZE完成签到,获得积分10
7秒前
8秒前
小仙女发布了新的文献求助10
8秒前
香蕉觅云应助llzuo采纳,获得10
8秒前
9秒前
大P小q发布了新的文献求助10
10秒前
10秒前
11秒前
kkuula完成签到,获得积分20
12秒前
wss关注了科研通微信公众号
12秒前
12秒前
要减肥玉米完成签到,获得积分20
12秒前
13秒前
13秒前
zhendou完成签到,获得积分10
14秒前
14秒前
赘婿应助ocean采纳,获得10
14秒前
14秒前
ZHIXIANGWENG发布了新的文献求助10
15秒前
不安的夜柳完成签到,获得积分10
15秒前
isvv发布了新的文献求助10
15秒前
15秒前
July发布了新的文献求助10
15秒前
15秒前
Nathan完成签到 ,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462073
求助须知:如何正确求助?哪些是违规求助? 3055716
关于积分的说明 9048980
捐赠科研通 2745328
什么是DOI,文献DOI怎么找? 1506180
科研通“疑难数据库(出版商)”最低求助积分说明 696000
邀请新用户注册赠送积分活动 695560