Nearest neighbor-based approaches for multi-instance multi-label classification

k-最近邻算法 计算机科学 人工智能 机器学习 转化(遗传学) 相关性(法律) 数据挖掘 功能(生物学) 模式识别(心理学) 政治学 生物化学 进化生物学 生物 基因 化学 法学
作者
Amelia Zafra,Eva Gibaja
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:232: 120876-120876 被引量:2
标识
DOI:10.1016/j.eswa.2023.120876
摘要

Nearest neighbor-based methods are classic techniques that, due to their efficiency, still are widely used today. However, they have not been broadly applied to solve the multi-instance multi-label (MIML) problem, a supervised learning paradigm that combines multi-instance (MI) and multi-label (ML) learning. This work presents new neighbor-based approaches for solving MIML problems. On the one hand, MIML data are transformed into ML data and ML nearest neighbor algorithms are used. On the other hand, algorithms that directly address MIML data and use a bag-based distance are proposed. A comprehensive study and an overall comparison have been conducted to study the performance of these methods using different configurations. Experiments included 16 datasets and 8 performance metrics. The results and statistical tests showed that the problem transformation applied and the distance function used impacted the performance and that the approaches that do not transform the problem obtained the best predictive results. Furthermore, most of the proposed algorithms outperformed the MIMLkNN algorithm, the state-of-art algorithm for MIML learning based on nearest-neighbor. Therefore, the relevance and capabilities of neighbor-based approaches to obtain competitive results in MIML learning are shown. Finally, all the algorithms developed in this paper have been included in the MIML library to facilitate the comparison with other future proposals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moonlight完成签到,获得积分10
1秒前
完美世界应助轻松的采柳采纳,获得10
2秒前
天空中飞翔的鱼完成签到,获得积分10
2秒前
英俊的铭应助果实采纳,获得10
3秒前
明理的飞飞完成签到,获得积分10
3秒前
慕辰完成签到,获得积分10
3秒前
高公子完成签到 ,获得积分10
4秒前
hqq发布了新的文献求助10
4秒前
西风惊绿完成签到,获得积分10
5秒前
orixero应助疯子采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
兔兔不睡觉完成签到 ,获得积分10
7秒前
Owllight发布了新的文献求助10
8秒前
无聊的月饼完成签到 ,获得积分10
9秒前
regene完成签到,获得积分10
10秒前
CipherSage应助飘逸楷瑞采纳,获得20
12秒前
kedaya应助Aru采纳,获得50
12秒前
12秒前
寂静之声发布了新的文献求助20
12秒前
JamesPei应助秀丽的涫采纳,获得10
12秒前
星轨完成签到,获得积分10
13秒前
15秒前
完美世界应助果实采纳,获得10
16秒前
优美电脑完成签到,获得积分10
16秒前
MY999应助dmxywzw6采纳,获得30
16秒前
BIBIBI发布了新的文献求助10
16秒前
ding应助副掌门采纳,获得10
17秒前
霸气鞯完成签到 ,获得积分10
18秒前
烟花应助果实采纳,获得10
19秒前
20秒前
21秒前
21秒前
22秒前
仔仔完成签到 ,获得积分10
22秒前
22秒前
qw完成签到,获得积分10
23秒前
李健的小迷弟应助hqq采纳,获得10
23秒前
聪慧芷巧发布了新的文献求助10
23秒前
qst完成签到,获得积分10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150