Vacuolar sugar transporter EARLY RESPONSE TO DEHYDRATION6-LIKE4 affects fructose signaling and plant growth

果糖 液泡 拟南芥 拟南芥 生物 细胞生物学 生物化学 基因 突变体 细胞质
作者
Azkia Khan,Jintao Cheng,Anastasia Kitashova,Lisa Fürtauer,Thomas Nägele,Cristiana Picco,Joachim Scholz‐Starke,Isabel Keller,H. Ekkehard Neuhaus,Benjamin Pommerrenig
出处
期刊:Plant Physiology [Oxford University Press]
卷期号:193 (3): 2141-2163 被引量:7
标识
DOI:10.1093/plphys/kiad403
摘要

Regulation of intracellular sugar homeostasis is maintained by regulation of activities of sugar import and export proteins residing at the tonoplast. We show here that the EARLY RESPONSE TO DEHYDRATION6-LIKE4 (ERDL4) protein, a member of the monosaccharide transporter family, resides in the vacuolar membrane in Arabidopsis (Arabidopsis thaliana). Gene expression and subcellular fractionation studies indicated that ERDL4 participates in fructose allocation across the tonoplast. Overexpression of ERDL4 increased total sugar levels in leaves due to a concomitantly induced stimulation of TONOPLAST SUGAR TRANSPORTER 2 (TST2) expression, coding for the major vacuolar sugar loader. This conclusion is supported by the finding that tst1-2 knockout lines overexpressing ERDL4 lack increased cellular sugar levels. ERDL4 activity contributing to the coordination of cellular sugar homeostasis is also indicated by 2 further observations. First, ERDL4 and TST genes exhibit an opposite regulation during a diurnal rhythm, and second, the ERDL4 gene is markedly expressed during cold acclimation, representing a situation in which TST activity needs to be upregulated. Moreover, ERDL4-overexpressing plants show larger rosettes and roots, a delayed flowering time, and increased total seed yield. Consistently, erdl4 knockout plants show impaired cold acclimation and freezing tolerance along with reduced plant biomass. In summary, we show that modification of cytosolic fructose levels influences plant organ development and stress tolerance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
bai发布了新的文献求助10
1秒前
1秒前
1秒前
居蓝发布了新的文献求助10
1秒前
wwww发布了新的文献求助50
1秒前
李健的小迷弟应助WANG采纳,获得10
1秒前
墨白白发布了新的文献求助10
2秒前
天真的小珍完成签到,获得积分20
2秒前
2秒前
18621058639完成签到,获得积分10
3秒前
MYY发布了新的文献求助10
3秒前
3秒前
4秒前
科目三应助麦乐迪采纳,获得30
4秒前
纯情的菀发布了新的文献求助10
4秒前
5秒前
5秒前
小葡萄发布了新的文献求助10
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
5秒前
蜗牛完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
劲秉应助lingyan hu采纳,获得10
6秒前
小老板的手抓饼完成签到,获得积分10
6秒前
科研通AI2S应助善良绮菱采纳,获得30
7秒前
JY完成签到,获得积分20
7秒前
7秒前
独特的飞雪完成签到,获得积分10
7秒前
一条咸鱼发布了新的文献求助10
8秒前
寂寞的季节完成签到,获得积分10
8秒前
chenweijie完成签到,获得积分10
8秒前
SCIAI发布了新的文献求助10
8秒前
Owen应助天天喝咖啡采纳,获得10
8秒前
swagger发布了新的文献求助10
9秒前
10秒前
大方汉堡完成签到,获得积分10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319