Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image Segmentation

计算机科学 分割 人工智能 监督学习 特征学习 机器学习 基本事实 模式识别(心理学) 光学(聚焦) 代表(政治) 半监督学习 特征(语言学) 人工神经网络 语言学 哲学 物理 政治 法学 政治学 光学
作者
Qianying Liu,Xiao Gu,Paul Henderson,Fani Deligianni
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2306.14293
摘要

Semi-supervised learning has demonstrated great potential in medical image segmentation by utilizing knowledge from unlabeled data. However, most existing approaches do not explicitly capture high-level semantic relations between distant regions, which limits their performance. In this paper, we focus on representation learning for semi-supervised learning, by developing a novel Multi-Scale Cross Supervised Contrastive Learning (MCSC) framework, to segment structures in medical images. We jointly train CNN and Transformer models, regularising their features to be semantically consistent across different scales. Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations that reflect intra- and inter-slice relationships across the whole dataset. To tackle class imbalance, we take into account the prevalence of each class to guide contrastive learning and ensure that features adequately capture infrequent classes. Extensive experiments on two multi-structure medical segmentation datasets demonstrate the effectiveness of MCSC. It not only outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice, but also greatly reduces the performance gap with fully supervised methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cc发布了新的文献求助10
1秒前
1秒前
2秒前
柯达伊完成签到 ,获得积分20
2秒前
沙枣花墙子完成签到,获得积分10
2秒前
晚睡是小狗完成签到,获得积分10
3秒前
4秒前
小二郎应助i说晚安采纳,获得10
6秒前
xzyin应助xaoi采纳,获得10
6秒前
兴奋寄容发布了新的文献求助10
6秒前
壮观以松发布了新的文献求助10
7秒前
万能图书馆应助mawenyu采纳,获得10
7秒前
水蜜桃幽灵完成签到,获得积分10
12秒前
龍Ryu发布了新的文献求助10
12秒前
aaa发布了新的文献求助10
13秒前
搜集达人应助沉尘采纳,获得10
13秒前
白石杏完成签到,获得积分10
13秒前
柯达伊发布了新的文献求助10
13秒前
慕青应助oceana采纳,获得10
15秒前
16秒前
时间轨迹发布了新的文献求助10
17秒前
坚定芷烟完成签到,获得积分10
17秒前
高兴的海豚完成签到,获得积分10
18秒前
FashionBoy应助兴奋寄容采纳,获得10
19秒前
19秒前
20秒前
jenningseastera应助哈哈采纳,获得20
21秒前
21秒前
21秒前
星辰大海应助大马哈鱼采纳,获得10
22秒前
23秒前
研友_VZG7GZ应助Bao采纳,获得10
23秒前
十三发布了新的文献求助10
23秒前
吴啊发布了新的文献求助10
24秒前
pipipi发布了新的文献求助10
24秒前
25秒前
25秒前
搞学术的小傻子完成签到,获得积分10
25秒前
英姑应助5114shatou大王采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844