ASMEvoNAS: Adaptive segmented multi-objective evolutionary network architecture search

计算机科学 进化算法 建筑 人工智能 进化规划 艺术 视觉艺术
作者
Yan Li,Zhipeng Zhang,Jing Liang,Boyang Qu,Kunjie Yu,Kongyuan Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110639-110639 被引量:2
标识
DOI:10.1016/j.asoc.2023.110639
摘要

Network architecture search (NAS) has attracted much attention as an automatic design technique of network architecture. In particular, multi-objective evolutionary algorithms (MOEAs) have been a popular kind of optimizer in NAS due to their global optimization capability. However, as a population-based iterative search method, MOEAs are subject to the unbearable computational cost of individual evaluation on multiple objectives at each generation, which affects their generalization ability and transferability of MOEA-based NAS. Therefore, an adaptive segmented multi-objective evolutionary network architecture search (ASMEvoNAS) method is proposed in this paper. Firstly, an adaptive segmented evaluation strategy is designed to adaptively select different but more suitable objectives to efficiently assess the candidate architectures at different evolutionary stages, instead of evaluating them by all the considered objectives simultaneously. Thus, the computational cost and complexity of the search process can be controlled and reduced to some extent. Secondly, a preference-based pre-selection strategy is designed to filter out the initialized architectures with high parameter quantities to reduce the total parameter scale of the whole population and memory consumption. Last, a novel desirable gene reservation-based crossover and a directed connection-based mutation are proposed to produce offspring. Experimental results show that ASMEvoNAS shows promising performance on CIFAR-10, CIFAR-100, and ImageNet with error rates of 2.21%, 15.57%, and 24.43% top-1, respectively. The proposed method reduces the search cost to 0.36 GPU-Days on CIFAR-10 while maintaining competitive classification performance compared to state-of-the-art networks. In addition, ASMEvoNAS presents superior performance when dealing with the considered transfer tasks, as well as the benchmark dataset of NAS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助10
1秒前
荔枝多酚发布了新的文献求助10
2秒前
007号选手发布了新的文献求助10
2秒前
小白发布了新的文献求助10
3秒前
融小葵发布了新的文献求助10
4秒前
4秒前
4秒前
小蘑菇应助小李找文献采纳,获得10
4秒前
4秒前
严兴明完成签到,获得积分10
4秒前
5秒前
平常的元蝶完成签到 ,获得积分10
6秒前
美满嘉熙完成签到,获得积分10
7秒前
端庄的毛豆完成签到,获得积分10
7秒前
遨游的人发布了新的文献求助10
7秒前
懵懂的晓曼完成签到,获得积分10
9秒前
灿灿完成签到 ,获得积分10
9秒前
10秒前
虾滑发布了新的文献求助20
10秒前
皮鲂完成签到,获得积分10
10秒前
小易发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
12秒前
万能图书馆应助小红采纳,获得10
12秒前
13秒前
13秒前
14秒前
舒心安柏完成签到 ,获得积分10
14秒前
14秒前
rainbow完成签到,获得积分10
14秒前
15秒前
15秒前
小南发布了新的文献求助10
15秒前
15秒前
15秒前
粒粒糖完成签到,获得积分10
15秒前
我是老大应助小易采纳,获得10
15秒前
16秒前
16秒前
lzz发布了新的文献求助10
16秒前
zz完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514286
求助须知:如何正确求助?哪些是违规求助? 4608193
关于积分的说明 14508898
捐赠科研通 4544028
什么是DOI,文献DOI怎么找? 2489864
邀请新用户注册赠送积分活动 1471799
关于科研通互助平台的介绍 1443710