ASMEvoNAS: Adaptive segmented multi-objective evolutionary network architecture search

计算机科学 进化算法 建筑 人工智能 进化规划 视觉艺术 艺术
作者
Yan Li,Zhipeng Zhang,Jing Liang,Boyang Qu,Kunjie Yu,Kongyuan Wang
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:146: 110639-110639 被引量:2
标识
DOI:10.1016/j.asoc.2023.110639
摘要

Network architecture search (NAS) has attracted much attention as an automatic design technique of network architecture. In particular, multi-objective evolutionary algorithms (MOEAs) have been a popular kind of optimizer in NAS due to their global optimization capability. However, as a population-based iterative search method, MOEAs are subject to the unbearable computational cost of individual evaluation on multiple objectives at each generation, which affects their generalization ability and transferability of MOEA-based NAS. Therefore, an adaptive segmented multi-objective evolutionary network architecture search (ASMEvoNAS) method is proposed in this paper. Firstly, an adaptive segmented evaluation strategy is designed to adaptively select different but more suitable objectives to efficiently assess the candidate architectures at different evolutionary stages, instead of evaluating them by all the considered objectives simultaneously. Thus, the computational cost and complexity of the search process can be controlled and reduced to some extent. Secondly, a preference-based pre-selection strategy is designed to filter out the initialized architectures with high parameter quantities to reduce the total parameter scale of the whole population and memory consumption. Last, a novel desirable gene reservation-based crossover and a directed connection-based mutation are proposed to produce offspring. Experimental results show that ASMEvoNAS shows promising performance on CIFAR-10, CIFAR-100, and ImageNet with error rates of 2.21%, 15.57%, and 24.43% top-1, respectively. The proposed method reduces the search cost to 0.36 GPU-Days on CIFAR-10 while maintaining competitive classification performance compared to state-of-the-art networks. In addition, ASMEvoNAS presents superior performance when dealing with the considered transfer tasks, as well as the benchmark dataset of NAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助zhangjianing采纳,获得30
刚刚
张可完成签到 ,获得积分10
刚刚
1秒前
Ray发布了新的文献求助10
1秒前
baomingqiu发布了新的文献求助10
1秒前
善学以致用应助高会和采纳,获得10
2秒前
4秒前
耍酷蜡烛完成签到,获得积分10
4秒前
星下梧桐关注了科研通微信公众号
5秒前
燕燕完成签到,获得积分10
5秒前
6秒前
wangyi发布了新的文献求助10
7秒前
Hello应助大群采纳,获得10
8秒前
8秒前
无医完成签到,获得积分10
8秒前
黄沙漠完成签到 ,获得积分10
9秒前
9秒前
9秒前
隐形曼青应助1+1采纳,获得10
9秒前
zhangwei应助加菲丰丰采纳,获得10
10秒前
jiu完成签到,获得积分10
10秒前
10秒前
SYT完成签到,获得积分10
10秒前
11秒前
完美世界应助小慧儿采纳,获得10
12秒前
小二郎应助李凤凤采纳,获得10
12秒前
12秒前
乐乐应助ccc采纳,获得10
12秒前
落夜完成签到,获得积分10
12秒前
玉米烤肠发布了新的文献求助10
13秒前
轻松的小白菜完成签到,获得积分10
13秒前
wangyi完成签到,获得积分10
13秒前
舒心新梅发布了新的文献求助10
13秒前
酷波er应助AAAAAAAAAAA采纳,获得10
13秒前
14秒前
汉堡包应助ZHANG_Kun采纳,获得10
14秒前
吃不饱星球球长应助lhr采纳,获得20
14秒前
14秒前
阳光湘完成签到,获得积分10
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892