NiCu bimetallic metal–organic framework to improve the desalination performance of capacitive deionization

电容去离子 海水淡化 材料科学 吸附 电化学 化学工程 电容 水溶液 活性炭 纳米技术 电极 化学 生物化学 工程类 物理化学 有机化学
作者
Nguyen Anh Thu Tran,Ju‐Young Moon,Jong Hak Kim,Jung Tae Park,Younghyun Cho
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:324: 124519-124519 被引量:6
标识
DOI:10.1016/j.seppur.2023.124519
摘要

Due to its energy-saving and environment-friendly process without secondary pollutant, capacitive deionization (CDI), which separates the charged ion species from solution by applying external electric energy, provides an alternative desalination technology. Even though carbon-based electrodes have mostly been used so far, they suffer from limited salt removal performance because of insufficient ion uptake capacity and stringent regeneration conditions, which hinder the system from obtaining higher performance and scale-up. The development of a transition metal-based electrode has attracted much attention for emerging electrochemical applications, such as capacitive deionization, due to its unique electrochemical properties. However, synthesizing metal–organic frameworks (MOFs) in aqueous solution with high crystalline structure has been a challenging task. In this study, we used a simple hydrothermal technique to create NiCu–FA in aqueous solution to synthesize crystalline MOF structure. The newly developed NiCu–FA demonstrated high salt adsorption capacity, high salt adsorption rate, and outstanding CDI cycle stability, emphasizing the importance of high surface area with salt-activated transition metal. The high adsorption capacity of 10.55 mg/g could be achieved, which is over 76 % increase, compared to that of the pristine AC electrode 5.98 mg/g. Such enhanced desalination performance results from the synergistic contribution of electric double layer (EDL) capacitance from AC and pseudocapacitive behavior from NiCu–FA, which was confirmed by electrochemical measurements. We believe that our approach can offer a promising candidate for practical CDI application with high desalination performance and high salinity feed source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小星星完成签到 ,获得积分10
刚刚
1秒前
付11发布了新的文献求助10
1秒前
1秒前
情怀应助感人的心采纳,获得10
1秒前
2秒前
小彤完成签到 ,获得积分10
2秒前
4秒前
5秒前
5秒前
柚子发布了新的文献求助10
6秒前
wangjialong完成签到,获得积分10
6秒前
看你个完成签到,获得积分10
6秒前
万刈完成签到,获得积分10
6秒前
WTT发布了新的文献求助10
7秒前
Owen应助丑麒采纳,获得10
7秒前
Ava应助TRNA采纳,获得10
8秒前
小蘑菇应助可爱卿采纳,获得10
8秒前
mouxq发布了新的文献求助10
9秒前
wanci应助勤恳傲儿采纳,获得10
10秒前
许安华发布了新的文献求助10
10秒前
坚强的严青应助攀攀采纳,获得30
10秒前
云朵发布了新的文献求助10
10秒前
调研昵称发布了新的文献求助10
10秒前
11秒前
11秒前
WTT完成签到,获得积分10
12秒前
等待八宝粥完成签到,获得积分10
12秒前
洁净山灵完成签到,获得积分20
12秒前
大白发布了新的文献求助10
13秒前
感动语蝶发布了新的文献求助10
13秒前
文鞅完成签到 ,获得积分10
13秒前
晏晏完成签到 ,获得积分10
13秒前
醉熏的伊发布了新的文献求助10
13秒前
好纠结完成签到,获得积分10
13秒前
14秒前
火星上的秋天完成签到,获得积分10
14秒前
酷波er应助22采纳,获得10
14秒前
chy完成签到,获得积分10
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847