NiCu bimetallic metal–organic framework to improve the desalination performance of capacitive deionization

电容去离子 海水淡化 材料科学 吸附 电化学 化学工程 电容 水溶液 活性炭 纳米技术 电极 化学 生物化学 有机化学 物理化学 工程类
作者
Nguyen Anh Thu Tran,Ju‐Young Moon,Jong Hak Kim,Jung Tae Park,Younghyun Cho
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:324: 124519-124519 被引量:9
标识
DOI:10.1016/j.seppur.2023.124519
摘要

Due to its energy-saving and environment-friendly process without secondary pollutant, capacitive deionization (CDI), which separates the charged ion species from solution by applying external electric energy, provides an alternative desalination technology. Even though carbon-based electrodes have mostly been used so far, they suffer from limited salt removal performance because of insufficient ion uptake capacity and stringent regeneration conditions, which hinder the system from obtaining higher performance and scale-up. The development of a transition metal-based electrode has attracted much attention for emerging electrochemical applications, such as capacitive deionization, due to its unique electrochemical properties. However, synthesizing metal–organic frameworks (MOFs) in aqueous solution with high crystalline structure has been a challenging task. In this study, we used a simple hydrothermal technique to create NiCu–FA in aqueous solution to synthesize crystalline MOF structure. The newly developed NiCu–FA demonstrated high salt adsorption capacity, high salt adsorption rate, and outstanding CDI cycle stability, emphasizing the importance of high surface area with salt-activated transition metal. The high adsorption capacity of 10.55 mg/g could be achieved, which is over 76 % increase, compared to that of the pristine AC electrode 5.98 mg/g. Such enhanced desalination performance results from the synergistic contribution of electric double layer (EDL) capacitance from AC and pseudocapacitive behavior from NiCu–FA, which was confirmed by electrochemical measurements. We believe that our approach can offer a promising candidate for practical CDI application with high desalination performance and high salinity feed source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haicheng发布了新的文献求助10
2秒前
梦开始关注了科研通微信公众号
2秒前
rofsc完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助30
4秒前
山上桃花酿完成签到 ,获得积分10
5秒前
Queen发布了新的文献求助10
6秒前
7秒前
怡然猎豹完成签到,获得积分0
8秒前
飘逸的麦片完成签到,获得积分10
8秒前
Erich完成签到 ,获得积分10
14秒前
空条承太郎的老婆完成签到,获得积分10
15秒前
16秒前
爱听歌宝马完成签到 ,获得积分10
16秒前
17秒前
小鸭嘎嘎完成签到 ,获得积分10
17秒前
洒家完成签到 ,获得积分10
18秒前
19秒前
知性的藏鸟完成签到 ,获得积分10
23秒前
shlw完成签到,获得积分10
24秒前
wang完成签到 ,获得积分10
24秒前
山下梅子酒完成签到 ,获得积分10
26秒前
晓书斋完成签到,获得积分10
28秒前
yy完成签到,获得积分10
28秒前
29秒前
31秒前
陆吉发布了新的文献求助10
32秒前
溜达鸡完成签到 ,获得积分10
34秒前
LL完成签到,获得积分10
35秒前
little完成签到,获得积分20
36秒前
量子星尘发布了新的文献求助10
37秒前
梦开始发布了新的文献求助10
37秒前
CYQ完成签到,获得积分10
38秒前
一颗红葡萄完成签到 ,获得积分10
38秒前
WeiPaiHWuFXZ完成签到 ,获得积分10
42秒前
遗忘完成签到,获得积分10
45秒前
zyj完成签到,获得积分10
47秒前
共享精神应助好困采纳,获得10
47秒前
48秒前
lucky完成签到 ,获得积分10
49秒前
隐形的巴豆完成签到,获得积分10
51秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5139539
求助须知:如何正确求助?哪些是违规求助? 4338428
关于积分的说明 13512740
捐赠科研通 4177665
什么是DOI,文献DOI怎么找? 2290966
邀请新用户注册赠送积分活动 1291445
关于科研通互助平台的介绍 1233775