NiCu bimetallic metal–organic framework to improve the desalination performance of capacitive deionization

电容去离子 海水淡化 材料科学 吸附 电化学 化学工程 电容 水溶液 活性炭 纳米技术 电极 化学 生物化学 工程类 物理化学 有机化学
作者
Nguyen Anh Thu Tran,Ju‐Young Moon,Jong Hak Kim,Jung Tae Park,Younghyun Cho
出处
期刊:Separation and Purification Technology [Elsevier BV]
卷期号:324: 124519-124519 被引量:9
标识
DOI:10.1016/j.seppur.2023.124519
摘要

Due to its energy-saving and environment-friendly process without secondary pollutant, capacitive deionization (CDI), which separates the charged ion species from solution by applying external electric energy, provides an alternative desalination technology. Even though carbon-based electrodes have mostly been used so far, they suffer from limited salt removal performance because of insufficient ion uptake capacity and stringent regeneration conditions, which hinder the system from obtaining higher performance and scale-up. The development of a transition metal-based electrode has attracted much attention for emerging electrochemical applications, such as capacitive deionization, due to its unique electrochemical properties. However, synthesizing metal–organic frameworks (MOFs) in aqueous solution with high crystalline structure has been a challenging task. In this study, we used a simple hydrothermal technique to create NiCu–FA in aqueous solution to synthesize crystalline MOF structure. The newly developed NiCu–FA demonstrated high salt adsorption capacity, high salt adsorption rate, and outstanding CDI cycle stability, emphasizing the importance of high surface area with salt-activated transition metal. The high adsorption capacity of 10.55 mg/g could be achieved, which is over 76 % increase, compared to that of the pristine AC electrode 5.98 mg/g. Such enhanced desalination performance results from the synergistic contribution of electric double layer (EDL) capacitance from AC and pseudocapacitive behavior from NiCu–FA, which was confirmed by electrochemical measurements. We believe that our approach can offer a promising candidate for practical CDI application with high desalination performance and high salinity feed source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA爱老虎油完成签到,获得积分10
1秒前
苗雅宁完成签到,获得积分10
3秒前
Dr大壮完成签到,获得积分10
3秒前
4秒前
5秒前
theThreeMagi完成签到,获得积分10
5秒前
Hobobi完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
doclv完成签到,获得积分10
8秒前
周博发布了新的文献求助10
9秒前
田様应助鲤鱼越越采纳,获得10
9秒前
lenetivy发布了新的文献求助10
12秒前
12秒前
山与关注了科研通微信公众号
13秒前
13秒前
汉堡包应助科研通管家采纳,获得10
16秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
xiaolei001应助uiui采纳,获得10
17秒前
salan应助科研通管家采纳,获得50
17秒前
无极微光应助科研通管家采纳,获得20
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
阿吉泰应助科研通管家采纳,获得10
17秒前
jopaul完成签到,获得积分10
17秒前
17秒前
烟花应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
应景的雨完成签到,获得积分10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
danli应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
清风完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4971793
求助须知:如何正确求助?哪些是违规求助? 4228053
关于积分的说明 13168320
捐赠科研通 4016015
什么是DOI,文献DOI怎么找? 2197709
邀请新用户注册赠送积分活动 1210607
关于科研通互助平台的介绍 1125059