A comprehensive review on transition metal nitrides electrode materials for supercapacitor: Syntheses, electronic structure engineering, present perspectives and future aspects

超级电容器 背景(考古学) 储能 计算机科学 纳米技术 材料科学 氮化物 数码产品 电容 电极 电气工程 工程类 化学 物理 功率(物理) 物理化学 量子力学 图层(电子) 生物 古生物学
作者
Sujit A. Kadam,Ranjit S. Kate,Vincent M. Peheliwa,Shruti A. Shingate,Carlo C. Sta. Maria,Yuan‐Ron Ma
出处
期刊:Journal of energy storage [Elsevier]
卷期号:72: 108229-108229 被引量:17
标识
DOI:10.1016/j.est.2023.108229
摘要

The creation of innovative materials that enhance energy storage efficiency is crucial for sustainable societal development and meeting the world's growing energy demand. In this context, both energy storage devices and the materials utilized play significant roles. Among various energy storage devices, supercapacitors (SCs) are gaining popularity as highly attractive complementary devices. They offer advantages such as fast charge-discharge capabilities, high specific capacitance (Cs), reversibility, and long lifespan. Transition metal nitrides (TMNs) constitute a unique class of materials that have garnered attention for their substantial redox activity, exceptional thermal and chemical stability, improved electron and ion conductivity, low cost, and high volumetric energy density. These attributes make TMNs an attractive choice for integration into SCs and rechargeable battery devices. Recent research has focused on the development of TMNs and TMNs-based composites for high-performance SC devices. This concept aims to provide an overview of the recent progress of TMNs in SC applications. The discussion encompasses various preparation techniques for various types of TMNs and their modification strategies, such as conducting polymer hybrids-based TMNs, heterostructure metal nitride, doped metal nitride, and multi-metal nitride, which have shown potential in enhancing the electrochemical performance of SCs. Additionally, an overview of the structural stability of TMN electrodes after electrochemical studies is provided. Finally, the challenges and future perspectives of TMNs in SCs are covered, offering valuable insights for the development of next-generation energy storage devices based on TMNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助乐观的非笑采纳,获得20
1秒前
mufcyang发布了新的文献求助10
1秒前
星辰大海应助健忘天问采纳,获得10
2秒前
潦草发布了新的文献求助10
2秒前
2秒前
3秒前
鲜于之玉发布了新的文献求助10
3秒前
3秒前
txf完成签到,获得积分20
3秒前
情怀应助parpate采纳,获得10
4秒前
wu发布了新的文献求助10
5秒前
hzx完成签到,获得积分10
9秒前
9秒前
10秒前
alexyang发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
清和漾发布了新的文献求助10
14秒前
hzx发布了新的文献求助10
15秒前
zuo完成签到,获得积分10
15秒前
parpate发布了新的文献求助10
15秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
坚强莺完成签到,获得积分10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
研友_VZG7GZ应助科研通管家采纳,获得30
16秒前
Singularity应助科研通管家采纳,获得10
16秒前
Singularity应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
丘比特应助阿文采纳,获得10
17秒前
18秒前
难摧发布了新的文献求助10
19秒前
健忘天问发布了新的文献求助10
19秒前
Spine关注了科研通微信公众号
20秒前
parpate完成签到,获得积分10
20秒前
20秒前
22秒前
22秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146297
求助须知:如何正确求助?哪些是违规求助? 2797687
关于积分的说明 7825144
捐赠科研通 2454059
什么是DOI,文献DOI怎么找? 1305990
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503