An interpretable analytic framework of the relationship between carsharing station development patterns and built environment for sustainable urban transportation

可解释性 成对比较 聚类分析 计算机科学 可持续发展 现状 运输工程 骨料(复合) 数据挖掘 工程类 机器学习 人工智能 政治学 材料科学 法学 经济 市场经济 复合材料
作者
Yuze Ma,Rui Miao,Zhihua Chen,Bo Zhang,Lewen Bao
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:377: 134445-134445 被引量:9
标识
DOI:10.1016/j.jclepro.2022.134445
摘要

The in-depth understanding of the relationship between development patterns of carsharing stations and built environment are important to the comprehensive station evaluation, layout optimization and urban spatial resources planning. However, the previous researches mainly study the operation of carsharing by aggregate methods with cross-sectional data and rarely discovered patterns within carsharing operation time series. Therefore, an interpretable analytic framework is proposed for predicting development patterns of carsharing stations, which is composed of a development pattern construction method based on Time Series Clustering and an interpretable prediction method based on CatBoost and SHAP models. The temporal variations of time series data are sufficiently utilized by time series clustering to identify patterns and CatBoost-SHAP has better classification performance and interpretability than general machine learning methods. The proposed framework is applied to explore the relationship between the development pattern of one-way carsharing stations and the built environment influencing factors. The result shows that the carsharing stations of Nanjing EVCARD are divided into two types: increasing pattern and decreasing pattern. The built environment factors that have the greatest impact on model output and the impact of pairwise factors are visually analysed. Moreover, this is also effective for a specific individual station to analyze the causes of its status quo. Therefore, this study provides data-driven intuitive decision references for carsharing operators, which helps the operators effectively manage carsharing stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助DORA采纳,获得10
1秒前
Yunus完成签到,获得积分20
1秒前
orixero应助TsutsumiRyuu采纳,获得10
2秒前
丘比特应助轻松的采枫采纳,获得10
2秒前
闪闪山水完成签到,获得积分10
3秒前
3秒前
李咸咸123完成签到,获得积分10
3秒前
3秒前
morii发布了新的文献求助10
4秒前
4秒前
小僧发布了新的文献求助10
4秒前
学习吧xy完成签到,获得积分10
5秒前
xiang完成签到,获得积分10
5秒前
7秒前
是事可可完成签到,获得积分10
8秒前
东方樱发布了新的文献求助10
8秒前
慕青应助FANYAO采纳,获得10
9秒前
典雅雨寒完成签到,获得积分10
9秒前
zw发布了新的文献求助10
11秒前
小Q啊啾发布了新的文献求助10
11秒前
111完成签到,获得积分10
11秒前
11秒前
13秒前
14秒前
Yunus发布了新的文献求助20
14秒前
14秒前
15秒前
Purlunatic完成签到,获得积分10
16秒前
su关闭了su文献求助
16秒前
Lllllllll发布了新的文献求助10
17秒前
lzl完成签到,获得积分10
18秒前
18秒前
在水一方应助cy采纳,获得10
19秒前
彭于彦祖应助kingwhitewing采纳,获得50
20秒前
20秒前
Yangzx完成签到,获得积分10
21秒前
21秒前
22秒前
温朋涛完成签到 ,获得积分10
22秒前
丘比特应助Dr.Sun采纳,获得10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157139
求助须知:如何正确求助?哪些是违规求助? 2808445
关于积分的说明 7877659
捐赠科研通 2466978
什么是DOI,文献DOI怎么找? 1313089
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919