An interpretable analytic framework of the relationship between carsharing station development patterns and built environment for sustainable urban transportation

可解释性 成对比较 聚类分析 计算机科学 可持续发展 现状 运输工程 骨料(复合) 数据挖掘 工程类 机器学习 人工智能 政治学 经济 材料科学 法学 复合材料 市场经济
作者
Yuze Ma,Rui Miao,Zhihua Chen,Bo Zhang,Lewen Bao
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:377: 134445-134445 被引量:9
标识
DOI:10.1016/j.jclepro.2022.134445
摘要

The in-depth understanding of the relationship between development patterns of carsharing stations and built environment are important to the comprehensive station evaluation, layout optimization and urban spatial resources planning. However, the previous researches mainly study the operation of carsharing by aggregate methods with cross-sectional data and rarely discovered patterns within carsharing operation time series. Therefore, an interpretable analytic framework is proposed for predicting development patterns of carsharing stations, which is composed of a development pattern construction method based on Time Series Clustering and an interpretable prediction method based on CatBoost and SHAP models. The temporal variations of time series data are sufficiently utilized by time series clustering to identify patterns and CatBoost-SHAP has better classification performance and interpretability than general machine learning methods. The proposed framework is applied to explore the relationship between the development pattern of one-way carsharing stations and the built environment influencing factors. The result shows that the carsharing stations of Nanjing EVCARD are divided into two types: increasing pattern and decreasing pattern. The built environment factors that have the greatest impact on model output and the impact of pairwise factors are visually analysed. Moreover, this is also effective for a specific individual station to analyze the causes of its status quo. Therefore, this study provides data-driven intuitive decision references for carsharing operators, which helps the operators effectively manage carsharing stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rilin发布了新的文献求助10
刚刚
lyh完成签到 ,获得积分10
1秒前
其老板发布了新的文献求助10
1秒前
TOP完成签到,获得积分10
2秒前
善学以致用应助四辈采纳,获得10
2秒前
欢也零星完成签到,获得积分10
2秒前
卿卿发布了新的文献求助10
3秒前
liumx发布了新的文献求助10
4秒前
4秒前
wangwangdui发布了新的文献求助10
4秒前
5秒前
坦率的无春完成签到,获得积分10
5秒前
xiaomili发布了新的文献求助10
5秒前
0h完成签到,获得积分10
5秒前
在水一方应助向北采纳,获得10
6秒前
科研通AI2S应助香蕉擎采纳,获得10
6秒前
我是老大应助苏苏采纳,获得10
6秒前
6秒前
6秒前
6秒前
所所应助yang采纳,获得10
7秒前
8秒前
初静发布了新的文献求助10
8秒前
8秒前
9秒前
儒雅寒天发布了新的文献求助10
9秒前
xiaomili完成签到,获得积分10
10秒前
12秒前
12秒前
医者发布了新的文献求助10
12秒前
14秒前
驰驰发布了新的文献求助10
15秒前
筱雪筱雪呀完成签到,获得积分10
15秒前
封典发布了新的文献求助10
18秒前
18秒前
19秒前
斯文败类应助dio采纳,获得10
20秒前
pluto应助其老板采纳,获得10
22秒前
liyuna0910发布了新的文献求助30
22秒前
Delia完成签到 ,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794