CNN Features off-the-shelf: an Astounding Baseline for Recognition

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 分类器(UML) 支持向量机 视觉对象识别的认知神经科学 上下文图像分类 内存占用 特征提取 特征(语言学) 代表(政治) 图像(数学) 政治 法学 哲学 操作系统 语言学 政治学
作者
Ali Sharif Razavian,Hossein Azizpour,Josephine Sullivan,Stefan Carlsson
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.1403.6382
摘要

Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the \overfeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the \overfeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the \overfeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or $L2$ distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
美人鱼听不了超声波完成签到 ,获得积分10
1秒前
桐桐应助aa采纳,获得10
2秒前
天Q发布了新的文献求助10
3秒前
Liu应助温婉的乞采纳,获得30
4秒前
xiaohong发布了新的文献求助10
4秒前
wangwangdui发布了新的文献求助10
4秒前
米玉米完成签到,获得积分10
4秒前
Ava应助司空笑白采纳,获得10
7秒前
dinghaifeng应助科研通管家采纳,获得10
7秒前
dinghaifeng应助科研通管家采纳,获得10
7秒前
JamesPei应助程星宇采纳,获得10
7秒前
张凌霄完成签到,获得积分10
8秒前
1235完成签到,获得积分10
10秒前
稳重乌龟完成签到,获得积分10
10秒前
xiaohong完成签到,获得积分10
11秒前
CodeCraft应助key采纳,获得10
12秒前
fang完成签到 ,获得积分10
12秒前
13秒前
13秒前
Theo发布了新的文献求助10
14秒前
14秒前
WSYang完成签到,获得积分10
14秒前
灯火阑珊完成签到,获得积分10
14秒前
16秒前
Lily_0_o发布了新的文献求助10
17秒前
思源应助sunnyfish007采纳,获得10
19秒前
由雨柏发布了新的文献求助10
21秒前
21秒前
最牛的kangkang完成签到,获得积分10
22秒前
Theo完成签到,获得积分10
22秒前
23秒前
da_line发布了新的文献求助30
23秒前
cc完成签到,获得积分20
25秒前
沉默凡梦完成签到,获得积分10
26秒前
27秒前
28秒前
29秒前
小蘑菇应助Lily_0_o采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958087
求助须知:如何正确求助?哪些是违规求助? 3504271
关于积分的说明 11117667
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788396
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802541