重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

CNN Features off-the-shelf: an Astounding Baseline for Recognition

计算机科学 卷积神经网络 人工智能 模式识别(心理学) 分类器(UML) 支持向量机 视觉对象识别的认知神经科学 上下文图像分类 内存占用 特征提取 特征(语言学) 代表(政治) 图像(数学) 政治 法学 哲学 操作系统 语言学 政治学
作者
Ali Sharif Razavian,Hossein Azizpour,Josephine Sullivan,Stefan Carlsson
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.1403.6382
摘要

Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the \overfeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the \overfeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the \overfeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or $L2$ distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
125ljw发布了新的文献求助10
1秒前
阿腾发布了新的文献求助20
1秒前
li完成签到,获得积分10
2秒前
木叶完成签到,获得积分10
3秒前
面条发布了新的文献求助10
3秒前
3秒前
捶捶完成签到,获得积分10
3秒前
LYF发布了新的文献求助10
4秒前
阿若完成签到 ,获得积分10
4秒前
玩命蛋挞完成签到,获得积分10
4秒前
5秒前
霜之哀伤发布了新的文献求助10
5秒前
wang77发布了新的文献求助10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
xxfsx应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
追寻迎南完成签到,获得积分10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
且慢应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
且慢应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得50
6秒前
xxfsx应助科研通管家采纳,获得10
6秒前
xxfsx应助科研通管家采纳,获得20
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
9秒前
9秒前
xx完成签到 ,获得积分10
9秒前
科目三应助张姐采纳,获得10
9秒前
10秒前
科目三应助yqf采纳,获得10
10秒前
MM11111完成签到,获得积分10
11秒前
面条完成签到,获得积分10
11秒前
可爱的函函应助ye采纳,获得10
11秒前
12秒前
阿腾完成签到,获得积分10
12秒前
科研通AI6应助125ljw采纳,获得20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468049
求助须知:如何正确求助?哪些是违规求助? 4571603
关于积分的说明 14330660
捐赠科研通 4498112
什么是DOI,文献DOI怎么找? 2464315
邀请新用户注册赠送积分活动 1453064
关于科研通互助平台的介绍 1427739