Developments in deep learning for change detection in remote sensing: A review

变更检测 计算机科学 领域(数学) 鉴定(生物学) 深度学习 资源(消歧) 卫星 遥感 数据科学 人工智能 机器学习 地理 工程类 计算机网络 植物 数学 纯数学 生物 航空航天工程
作者
Gaganpreet Kaur,Yasir Afaq
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (2): 223-257 被引量:5
标识
DOI:10.1111/tgis.13133
摘要

Abstract Deep learning (DL) algorithms have become increasingly popular in recent years for remote sensing applications, particularly in the field of change detection. DL has proven to be successful in automatically identifying changes in satellite images with varying resolutions. The integration of DL with remote sensing has not only facilitated the identification of global and regional changes but has also been a valuable resource for the scientific community. Researchers have developed numerous approaches for change detection, and the proposed work provides a summary of the most recent ones. Additionally, it introduces the common DL techniques used for detecting changes in satellite photos. The meta‐analysis conducted in this article serves two purposes. Firstly, it tracks the evolution of change detection in DL investigations, highlighting the advancements made in this field. Secondly, it utilizes powerful DL‐based change detection algorithms to determine the best strategy for monitoring changes at different resolutions. Furthermore, the proposed work thoroughly analyzes the performance of several DL approaches used for change detection. It discusses the strengths and limitations of these approaches, providing insights into their effectiveness and areas for improvement. The article also discusses future directions for DL‐based change detection, emphasizing the need for further research and development in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
2秒前
czcmh应助科研通管家采纳,获得30
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
郁浅应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
phil发布了新的文献求助10
4秒前
larsy完成签到 ,获得积分10
4秒前
5秒前
mm完成签到,获得积分20
5秒前
科研通AI6应助安安安采纳,获得10
6秒前
勤劳翰完成签到,获得积分10
6秒前
上官若男应助华仔采纳,获得10
6秒前
6秒前
wyj12342发布了新的文献求助50
7秒前
qwt完成签到,获得积分20
8秒前
9秒前
小茜完成签到 ,获得积分10
9秒前
9秒前
天真的秋翠完成签到,获得积分10
10秒前
10秒前
852应助小陈要努力采纳,获得10
11秒前
Ei完成签到 ,获得积分10
11秒前
12秒前
qwt发布了新的文献求助10
12秒前
13秒前
13秒前
琉璃慕倾君完成签到 ,获得积分10
16秒前
guard发布了新的文献求助30
18秒前
幽默雨泽完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533694
求助须知:如何正确求助?哪些是违规求助? 4621911
关于积分的说明 14580900
捐赠科研通 4562017
什么是DOI,文献DOI怎么找? 2499851
邀请新用户注册赠送积分活动 1479505
关于科研通互助平台的介绍 1450600