Developments in deep learning for change detection in remote sensing: A review

变更检测 计算机科学 领域(数学) 鉴定(生物学) 深度学习 资源(消歧) 卫星 遥感 数据科学 人工智能 机器学习 地理 工程类 计算机网络 植物 数学 纯数学 生物 航空航天工程
作者
Gaganpreet Kaur,Yasir Afaq
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (2): 223-257 被引量:5
标识
DOI:10.1111/tgis.13133
摘要

Abstract Deep learning (DL) algorithms have become increasingly popular in recent years for remote sensing applications, particularly in the field of change detection. DL has proven to be successful in automatically identifying changes in satellite images with varying resolutions. The integration of DL with remote sensing has not only facilitated the identification of global and regional changes but has also been a valuable resource for the scientific community. Researchers have developed numerous approaches for change detection, and the proposed work provides a summary of the most recent ones. Additionally, it introduces the common DL techniques used for detecting changes in satellite photos. The meta‐analysis conducted in this article serves two purposes. Firstly, it tracks the evolution of change detection in DL investigations, highlighting the advancements made in this field. Secondly, it utilizes powerful DL‐based change detection algorithms to determine the best strategy for monitoring changes at different resolutions. Furthermore, the proposed work thoroughly analyzes the performance of several DL approaches used for change detection. It discusses the strengths and limitations of these approaches, providing insights into their effectiveness and areas for improvement. The article also discusses future directions for DL‐based change detection, emphasizing the need for further research and development in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZSC发布了新的文献求助10
1秒前
cc发布了新的文献求助10
2秒前
桐桐应助王聪采纳,获得10
2秒前
冷静水杯完成签到,获得积分20
2秒前
4秒前
5秒前
5秒前
5秒前
情怀应助xiang采纳,获得10
5秒前
nikakk完成签到,获得积分10
6秒前
6秒前
6秒前
PLAGH221发布了新的文献求助10
7秒前
伏波完成签到,获得积分0
7秒前
超开心完成签到,获得积分10
8秒前
pancake发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
科研通AI6应助DH采纳,获得10
9秒前
华仔应助xx采纳,获得10
9秒前
泡泡儿发布了新的文献求助10
9秒前
9秒前
小乖发布了新的文献求助10
10秒前
水水发布了新的文献求助10
11秒前
SC武完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
赵拉弟发布了新的文献求助20
12秒前
哦啦啦发布了新的文献求助30
12秒前
14秒前
army77发布了新的文献求助10
14秒前
鑫xin发布了新的文献求助10
14秒前
14秒前
小晋发布了新的文献求助10
15秒前
15秒前
anan完成签到 ,获得积分10
15秒前
搜集达人应助犹豫的云朵采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480763
求助须知:如何正确求助?哪些是违规求助? 4581949
关于积分的说明 14382770
捐赠科研通 4510558
什么是DOI,文献DOI怎么找? 2471862
邀请新用户注册赠送积分活动 1458272
关于科研通互助平台的介绍 1431940