亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Developments in deep learning for change detection in remote sensing: A review

变更检测 计算机科学 领域(数学) 鉴定(生物学) 深度学习 资源(消歧) 卫星 遥感 数据科学 人工智能 机器学习 地理 工程类 计算机网络 植物 数学 纯数学 生物 航空航天工程
作者
Gaganpreet Kaur,Yasir Afaq
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (2): 223-257 被引量:5
标识
DOI:10.1111/tgis.13133
摘要

Abstract Deep learning (DL) algorithms have become increasingly popular in recent years for remote sensing applications, particularly in the field of change detection. DL has proven to be successful in automatically identifying changes in satellite images with varying resolutions. The integration of DL with remote sensing has not only facilitated the identification of global and regional changes but has also been a valuable resource for the scientific community. Researchers have developed numerous approaches for change detection, and the proposed work provides a summary of the most recent ones. Additionally, it introduces the common DL techniques used for detecting changes in satellite photos. The meta‐analysis conducted in this article serves two purposes. Firstly, it tracks the evolution of change detection in DL investigations, highlighting the advancements made in this field. Secondly, it utilizes powerful DL‐based change detection algorithms to determine the best strategy for monitoring changes at different resolutions. Furthermore, the proposed work thoroughly analyzes the performance of several DL approaches used for change detection. It discusses the strengths and limitations of these approaches, providing insights into their effectiveness and areas for improvement. The article also discusses future directions for DL‐based change detection, emphasizing the need for further research and development in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
科研通AI2S应助朱杰鑫采纳,获得10
11秒前
53秒前
1分钟前
彭晓雅完成签到,获得积分10
1分钟前
朱杰鑫发布了新的文献求助10
1分钟前
在水一方应助魏你大爷采纳,获得10
1分钟前
1分钟前
魏你大爷发布了新的文献求助10
1分钟前
mama完成签到 ,获得积分10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
2分钟前
夏尔发布了新的文献求助10
2分钟前
FashionBoy应助朱杰鑫采纳,获得10
2分钟前
夏尔完成签到,获得积分10
2分钟前
2分钟前
朱杰鑫发布了新的文献求助10
2分钟前
打打应助朱杰鑫采纳,获得10
2分钟前
紫清发布了新的文献求助10
2分钟前
欧哈纳完成签到 ,获得积分10
3分钟前
3分钟前
朱杰鑫发布了新的文献求助10
3分钟前
紫清完成签到,获得积分10
3分钟前
科研通AI6应助紫清采纳,获得10
3分钟前
上官若男应助热心的珍采纳,获得10
3分钟前
尹静涵完成签到 ,获得积分10
3分钟前
4分钟前
fu发布了新的文献求助10
4分钟前
热心的珍发布了新的文献求助10
4分钟前
4分钟前
热心的珍完成签到,获得积分10
4分钟前
fu关闭了fu文献求助
4分钟前
LosPollos完成签到,获得积分10
5分钟前
顾矜应助橙子采纳,获得10
5分钟前
大个应助城府残雪采纳,获得10
5分钟前
6分钟前
泡泡完成签到 ,获得积分10
6分钟前
fu发布了新的文献求助10
6分钟前
fu完成签到,获得积分10
6分钟前
6分钟前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5386240
求助须知:如何正确求助?哪些是违规求助? 4508598
关于积分的说明 14030163
捐赠科研通 4418984
什么是DOI,文献DOI怎么找? 2427331
邀请新用户注册赠送积分活动 1420067
关于科研通互助平台的介绍 1398831