An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study

管道(软件) 基线(sea) 人工智能 深度学习 计算机科学 结直肠癌 模式识别(心理学) 癌症 医学 地质学 内科学 程序设计语言 海洋学
作者
Li-Yu Cai,Doenja M. J. Lambregts,Geerard L. Beets,M. Maß,Eduardo Pooch,Corentin Guérendel,Regina G. H. Beets‐Tan,S. Benson
出处
期刊:npj precision oncology [Springer Nature]
卷期号:8 (1) 被引量:1
标识
DOI:10.1038/s41698-024-00516-x
摘要

ABSTRACT The classification of extramural vascular invasion status using baseline magnetic resonance imaging in rectal cancer has gained significant attention as it is an important prognostic marker. Also, the accurate prediction of patients achieving complete response with primary staging MRI assists clinicians in determining subsequent treatment plans. Most studies utilised radiomics-based methods, requiring manually annotated segmentation and handcrafted features, which tend to generalise poorly. We retrospectively collected 509 patients from 9 centres, and proposed a fully automated pipeline for EMVI status classification and CR prediction with diffusion weighted imaging and T2-weighted imaging. We applied nnUNet, a self-configuring deep learning model, for tumour segmentation and employed learned multiple-level image features to train classification models, named MLNet. This ensures a more comprehensive representation of the tumour features, in terms of both fine-grained detail and global context. On external validation, MLNet, yielding similar AUCs as internal validation, outperformed 3D ResNet10, a deep neural network with ten layers designed for analysing spatiotemporal data, in both CR and EMVI tasks. For CR prediction, MLNet showed better results than the current state-of-the-art model using imaging and clinical features in the same external cohort. Our study demonstrated that incorporating multi-level image representations learned by a deep learning based tumour segmentation model on primary MRI improves the results of EMVI classification and CR prediction with good generalisation to external data. We observed variations in the contributions of individual feature maps to different classification tasks. This pipeline has the potential to be applied in clinical settings, particularly for EMVI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哎哟我去完成签到,获得积分10
刚刚
自觉博超完成签到,获得积分10
刚刚
爆米花应助香蕉雅香采纳,获得10
1秒前
2秒前
YeY关注了科研通微信公众号
2秒前
suga'完成签到 ,获得积分10
3秒前
awu完成签到 ,获得积分10
3秒前
lyn应助automan采纳,获得10
3秒前
4秒前
4秒前
cc发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
花花123发布了新的文献求助10
6秒前
NexusExplorer应助程洁素采纳,获得10
6秒前
科研通AI6应助年轻迪奥采纳,获得10
7秒前
Healer完成签到,获得积分10
8秒前
8秒前
西瓜完成签到 ,获得积分10
9秒前
Liyuan发布了新的文献求助10
10秒前
10秒前
10秒前
无花果应助二悬铃木采纳,获得10
10秒前
10秒前
11秒前
Lucas应助超人不会飞采纳,获得10
11秒前
gq0401完成签到,获得积分10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
zcl应助科研通管家采纳,获得50
11秒前
bonnie应助科研通管家采纳,获得30
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Bao应助科研通管家采纳,获得20
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
汉青完成签到,获得积分10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
Loooong应助科研通管家采纳,获得20
12秒前
科目三应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285920
求助须知:如何正确求助?哪些是违规求助? 4438798
关于积分的说明 13818833
捐赠科研通 4320377
什么是DOI,文献DOI怎么找? 2371398
邀请新用户注册赠送积分活动 1366944
关于科研通互助平台的介绍 1330406