An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study

管道(软件) 基线(sea) 人工智能 深度学习 计算机科学 结直肠癌 模式识别(心理学) 癌症 医学 地质学 内科学 程序设计语言 海洋学
作者
Li-Yu Cai,Doenja M. J. Lambregts,Geerard L. Beets,M. Maß,Eduardo Pooch,Corentin Guérendel,Regina G. H. Beets‐Tan,S. Benson
出处
期刊:npj precision oncology [Nature Portfolio]
卷期号:8 (1) 被引量:1
标识
DOI:10.1038/s41698-024-00516-x
摘要

ABSTRACT The classification of extramural vascular invasion status using baseline magnetic resonance imaging in rectal cancer has gained significant attention as it is an important prognostic marker. Also, the accurate prediction of patients achieving complete response with primary staging MRI assists clinicians in determining subsequent treatment plans. Most studies utilised radiomics-based methods, requiring manually annotated segmentation and handcrafted features, which tend to generalise poorly. We retrospectively collected 509 patients from 9 centres, and proposed a fully automated pipeline for EMVI status classification and CR prediction with diffusion weighted imaging and T2-weighted imaging. We applied nnUNet, a self-configuring deep learning model, for tumour segmentation and employed learned multiple-level image features to train classification models, named MLNet. This ensures a more comprehensive representation of the tumour features, in terms of both fine-grained detail and global context. On external validation, MLNet, yielding similar AUCs as internal validation, outperformed 3D ResNet10, a deep neural network with ten layers designed for analysing spatiotemporal data, in both CR and EMVI tasks. For CR prediction, MLNet showed better results than the current state-of-the-art model using imaging and clinical features in the same external cohort. Our study demonstrated that incorporating multi-level image representations learned by a deep learning based tumour segmentation model on primary MRI improves the results of EMVI classification and CR prediction with good generalisation to external data. We observed variations in the contributions of individual feature maps to different classification tasks. This pipeline has the potential to be applied in clinical settings, particularly for EMVI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
raincoats发布了新的文献求助10
1秒前
黄启烽完成签到,获得积分10
1秒前
JamesPei应助念姬采纳,获得10
2秒前
gggja完成签到,获得积分10
2秒前
3秒前
陈_Ccc发布了新的文献求助10
3秒前
黄启烽发布了新的文献求助10
5秒前
友好的妙松完成签到 ,获得积分10
6秒前
godblessyou发布了新的文献求助10
7秒前
Spirodelaz完成签到,获得积分10
8秒前
高路发布了新的文献求助10
8秒前
8秒前
8秒前
xulin完成签到 ,获得积分10
10秒前
yin完成签到,获得积分10
11秒前
11秒前
大胆的夏天完成签到,获得积分10
11秒前
风中的冰蓝完成签到,获得积分10
11秒前
余健完成签到,获得积分10
12秒前
12秒前
13秒前
萝卜发布了新的文献求助10
13秒前
mengguzai完成签到,获得积分10
13秒前
君君发布了新的文献求助10
13秒前
14秒前
godblessyou完成签到,获得积分10
14秒前
Farr完成签到,获得积分10
15秒前
成就的冰绿完成签到,获得积分10
16秒前
ZhJF发布了新的文献求助10
17秒前
牛牛眉目发布了新的文献求助10
18秒前
18秒前
圆圆完成签到,获得积分10
19秒前
666应助只吃煎饼不卷葱采纳,获得10
21秒前
21秒前
bunny发布了新的文献求助10
22秒前
Mayday完成签到,获得积分10
25秒前
N型半导体发布了新的文献求助10
25秒前
666应助阔落采纳,获得10
26秒前
开朗满天发布了新的文献求助10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388