An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study

管道(软件) 基线(sea) 人工智能 深度学习 计算机科学 结直肠癌 模式识别(心理学) 癌症 医学 地质学 内科学 程序设计语言 海洋学
作者
Li-Yu Cai,Doenja M. J. Lambregts,Geerard L. Beets,M. Maß,Eduardo Pooch,Corentin Guérendel,Regina G. H. Beets‐Tan,S. Benson
出处
期刊:npj precision oncology [Springer Nature]
卷期号:8 (1) 被引量:1
标识
DOI:10.1038/s41698-024-00516-x
摘要

ABSTRACT The classification of extramural vascular invasion status using baseline magnetic resonance imaging in rectal cancer has gained significant attention as it is an important prognostic marker. Also, the accurate prediction of patients achieving complete response with primary staging MRI assists clinicians in determining subsequent treatment plans. Most studies utilised radiomics-based methods, requiring manually annotated segmentation and handcrafted features, which tend to generalise poorly. We retrospectively collected 509 patients from 9 centres, and proposed a fully automated pipeline for EMVI status classification and CR prediction with diffusion weighted imaging and T2-weighted imaging. We applied nnUNet, a self-configuring deep learning model, for tumour segmentation and employed learned multiple-level image features to train classification models, named MLNet. This ensures a more comprehensive representation of the tumour features, in terms of both fine-grained detail and global context. On external validation, MLNet, yielding similar AUCs as internal validation, outperformed 3D ResNet10, a deep neural network with ten layers designed for analysing spatiotemporal data, in both CR and EMVI tasks. For CR prediction, MLNet showed better results than the current state-of-the-art model using imaging and clinical features in the same external cohort. Our study demonstrated that incorporating multi-level image representations learned by a deep learning based tumour segmentation model on primary MRI improves the results of EMVI classification and CR prediction with good generalisation to external data. We observed variations in the contributions of individual feature maps to different classification tasks. This pipeline has the potential to be applied in clinical settings, particularly for EMVI classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
游一发布了新的文献求助10
1秒前
慕青应助seanx采纳,获得10
1秒前
1秒前
雨中小王应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
2秒前
雨中小王应助科研通管家采纳,获得10
2秒前
不配.应助科研通管家采纳,获得200
2秒前
李健应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
Pendragon发布了新的文献求助10
3秒前
3秒前
3秒前
魔法少女猪壮壮完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
星期五完成签到,获得积分10
5秒前
阁主完成签到,获得积分10
6秒前
传奇3应助dd采纳,获得10
6秒前
乐乐应助汤婆婆采纳,获得10
7秒前
苹果亦巧完成签到,获得积分10
7秒前
....完成签到 ,获得积分10
7秒前
严婉蓉完成签到 ,获得积分10
7秒前
8秒前
Genius发布了新的文献求助10
8秒前
科目三应助66采纳,获得10
8秒前
FashionBoy应助berg采纳,获得10
9秒前
小鱼美美发布了新的文献求助10
11秒前
星辰大海应助苹果亦巧采纳,获得30
11秒前
全明星阿杜完成签到,获得积分10
12秒前
YTWen完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594267
求助须知:如何正确求助?哪些是违规求助? 4679962
关于积分的说明 14812493
捐赠科研通 4646674
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502831
关于科研通互助平台的介绍 1469497