An automated deep learning pipeline for EMVI classification and response prediction of rectal cancer using baseline MRI: a multi-centre study

管道(软件) 基线(sea) 人工智能 深度学习 计算机科学 结直肠癌 模式识别(心理学) 癌症 医学 地质学 内科学 程序设计语言 海洋学
作者
Li-Yu Cai,Doenja M. J. Lambregts,Geerard L. Beets,M. Maß,Eduardo Pooch,Corentin Guérendel,Regina G. H. Beets‐Tan,S. Benson
出处
期刊:npj precision oncology [Springer Nature]
卷期号:8 (1) 被引量:1
标识
DOI:10.1038/s41698-024-00516-x
摘要

ABSTRACT The classification of extramural vascular invasion status using baseline magnetic resonance imaging in rectal cancer has gained significant attention as it is an important prognostic marker. Also, the accurate prediction of patients achieving complete response with primary staging MRI assists clinicians in determining subsequent treatment plans. Most studies utilised radiomics-based methods, requiring manually annotated segmentation and handcrafted features, which tend to generalise poorly. We retrospectively collected 509 patients from 9 centres, and proposed a fully automated pipeline for EMVI status classification and CR prediction with diffusion weighted imaging and T2-weighted imaging. We applied nnUNet, a self-configuring deep learning model, for tumour segmentation and employed learned multiple-level image features to train classification models, named MLNet. This ensures a more comprehensive representation of the tumour features, in terms of both fine-grained detail and global context. On external validation, MLNet, yielding similar AUCs as internal validation, outperformed 3D ResNet10, a deep neural network with ten layers designed for analysing spatiotemporal data, in both CR and EMVI tasks. For CR prediction, MLNet showed better results than the current state-of-the-art model using imaging and clinical features in the same external cohort. Our study demonstrated that incorporating multi-level image representations learned by a deep learning based tumour segmentation model on primary MRI improves the results of EMVI classification and CR prediction with good generalisation to external data. We observed variations in the contributions of individual feature maps to different classification tasks. This pipeline has the potential to be applied in clinical settings, particularly for EMVI classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dktrrrr完成签到,获得积分10
刚刚
yaya完成签到,获得积分20
1秒前
1秒前
科研通AI2S应助无情的聋五采纳,获得10
2秒前
无花果应助superworm1采纳,获得10
2秒前
qwt完成签到,获得积分20
3秒前
4秒前
橘11完成签到,获得积分10
4秒前
5秒前
7秒前
9秒前
饼饼完成签到,获得积分10
10秒前
10秒前
庄彧完成签到 ,获得积分10
11秒前
luca发布了新的文献求助200
11秒前
文静紫霜完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
Ssyong发布了新的文献求助10
16秒前
16秒前
superworm1发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
lane完成签到,获得积分20
20秒前
缥缈剑愁发布了新的文献求助10
21秒前
缥缈剑愁发布了新的文献求助10
21秒前
缥缈剑愁发布了新的文献求助10
22秒前
缥缈剑愁发布了新的文献求助10
22秒前
缥缈剑愁发布了新的文献求助10
22秒前
缥缈剑愁发布了新的文献求助10
22秒前
缥缈剑愁发布了新的文献求助10
22秒前
缥缈剑愁发布了新的文献求助10
22秒前
缥缈剑愁发布了新的文献求助10
23秒前
缥缈剑愁发布了新的文献求助10
23秒前
24秒前
bird完成签到,获得积分10
25秒前
26秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137721
求助须知:如何正确求助?哪些是违规求助? 2788646
关于积分的说明 7787887
捐赠科研通 2445011
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601043