Deep2Pep: A Deep Learning Method in Multi-label Classification of Bioactive Peptide

深度学习 人工智能 计算机科学 编码器 嵌入 编码(内存) 计算生物学 机器学习 生物 操作系统
作者
Lihua Chen,Zhenkang Hu,Yuzhi Rong,Bao Lou
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:: 108021-108021 被引量:9
标识
DOI:10.1016/j.compbiolchem.2024.108021
摘要

Functional peptides are easy to absorb and have low side effects, which has attracted increasing interest from pharmaceutical scientists. However, due to the limitations in the laboratory funding and human resources, it is difficult to screen the functional peptides from a large number of peptides with unknown functions. With the development of machine learning and Deep learning, the combination of computational methods and biological information provides an effective method for identifying peptide functions. To explore the value of multi-functional active peptides, a new deep learning method named Deep2Pep (Deep learning to Peptides) was constructed, which was based on sequence encoding, embedding, and language tokenizer. It can achieve predictions of peptides on antimicrobial, antihypertensive, antioxidant and antihyperglycemic by converting sequence information into digital vectors, combined BiLSTM, attention-residual algorithm, and BERT Encoder. The results showed that Deep2Pep had a Hamming Loss of 0.095, subset Accuracy of 0.737, and Macro F1-Score of 0.734. which outperformed other models. BiLSTM played a primary role in Deep2Pep, which BERT encoder was in an auxiliary position. Deep learning algorithms was used in this study to accurately predict the four active functions of peptides, and it was expected to provide effective references for predicting multi-functional peptides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
广州南完成签到 ,获得积分10
刚刚
benj完成签到,获得积分10
刚刚
勤恳风华完成签到,获得积分10
1秒前
十七完成签到,获得积分10
1秒前
better11发布了新的文献求助10
1秒前
yang杨完成签到,获得积分10
1秒前
木木完成签到,获得积分10
1秒前
popo完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
霸气凡白发布了新的文献求助10
3秒前
危机的芸完成签到 ,获得积分10
3秒前
阔达的秀发完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
tz完成签到,获得积分10
5秒前
炙热的宛完成签到,获得积分10
5秒前
5秒前
shy完成签到,获得积分10
5秒前
Anyemzl完成签到,获得积分10
6秒前
jason完成签到,获得积分10
6秒前
墨辰完成签到 ,获得积分10
6秒前
XiaoDai完成签到,获得积分10
7秒前
明理楷瑞完成签到 ,获得积分10
7秒前
万能图书馆应助oli采纳,获得10
7秒前
why完成签到,获得积分10
8秒前
9秒前
壹贰完成签到,获得积分10
9秒前
马騳骉完成签到,获得积分10
9秒前
9秒前
飘逸踏歌完成签到,获得积分0
9秒前
快乐谷蓝完成签到,获得积分10
9秒前
10秒前
unfeeling8完成签到 ,获得积分10
11秒前
拾忆完成签到,获得积分10
11秒前
雷颖完成签到,获得积分10
11秒前
琴琴秦完成签到,获得积分10
11秒前
陈居居完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666670
求助须知:如何正确求助?哪些是违规求助? 3225617
关于积分的说明 9764084
捐赠科研通 2935444
什么是DOI,文献DOI怎么找? 1607713
邀请新用户注册赠送积分活动 759338
科研通“疑难数据库(出版商)”最低求助积分说明 735261