Predictive models of chronic kidney disease progression in pediatric patients

肾脏疾病 医学 肾功能 肾脏替代疗法 内科学 队列 斯科普斯 肌酐 队列研究 肾病科 梅德林 政治学 法学
作者
Eduardo A. Oliveira,Ana Cristina Simões e Silva,Enrico A. Colosimo
出处
期刊:Kidney International [Elsevier]
卷期号:105 (2): 393-393
标识
DOI:10.1016/j.kint.2023.11.010
摘要

We read with great interest the study conducted by Ng et al., 1 Ng D.K. Matheson M.B. Schwartz G.J. et al. Development of an adaptive clinical web-based prediction tool for kidney replacement therapy in children with chronic kidney disease. Kidney Int. 2023; 104: 985-994 Abstract Full Text Full Text PDF Scopus (0) Google Scholar aimed to develop a suite of predictive models for time to kidney replacement therapy in children with chronic kidney disease (CKD). In this well-designed study, Ng et al.1 Ng D.K. Matheson M.B. Schwartz G.J. et al. Development of an adaptive clinical web-based prediction tool for kidney replacement therapy in children with chronic kidney disease. Kidney Int. 2023; 104: 985-994 Abstract Full Text Full Text PDF Scopus (0) Google Scholar used robust data from the Chronic Kidney Disease in Children study 2 Furth S.L. Cole S.R. Moxey-Mims M. et al. Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol. 2006; 1: 1006-1015 Crossref PubMed Scopus (339) Google Scholar and a combination of sophisticated strategies, including both conventional statistics and machine learning methods. The authors developed 6 models of CKD progression in pediatric patients. In external validation, the elementary model, which includes the glomerular filtration rate, urine protein-creatinine ratio, and the CKD cause, showed excellent discrimination and calibration. Interestingly, we previously reported a risk prediction model for kidney failure based on a cohort of 147 pediatric patients enrolled in our Predialysis Interdisciplinary Management Program. 3 Cerqueira D.C. Soares C.M. Silva V.R. et al. A predictive model of progression of CKD to ESRD in a predialysis pediatric interdisciplinary program. Clin J Am Soc Nephrol. 2014; 9: 728-735 Crossref PubMed Scopus (32) Google Scholar Similarly, using classic survival analysis, we found that the most accurate model included baseline kidney function, proteinuria at admission, and primary kidney disease (glomerular vs. nonglomerular disease). Moreover, the c-statistic of our model was 0.872 (95% confidence interval, 0.802–0.942) for the 5-year follow-up, similar to that of the elementary model reported by Ng et al. (c-statistic = 0.865). Taken together, these findings highlight that routinely available clinical and laboratory data (namely, underlying CKD cause, glomerular filtration rate values at the early stages of disease, and proteinuria) are strong predictors of CKD progression. 4 Crane C.R. Garimella P.S. Heinze G. Predicting pediatric kidney disease progression-are 3 variables all you need?. Kidney Int. 2023; 104: 885-887 Abstract Full Text Full Text PDF Google Scholar We emphasize that these models are based on clinically accessible data. Therefore, the user-friendly web-based tool proposed by Ng et al.1 Ng D.K. Matheson M.B. Schwartz G.J. et al. Development of an adaptive clinical web-based prediction tool for kidney replacement therapy in children with chronic kidney disease. Kidney Int. 2023; 104: 985-994 Abstract Full Text Full Text PDF Scopus (0) Google Scholar has great potential to help pediatric nephrologists and CKD clinics in clinical decision-making and patient care planning. Development of an adaptive clinical web-based prediction tool for kidney replacement therapy in children with chronic kidney diseaseKidney InternationalVol. 104Issue 5PreviewClinicians need improved prediction models to estimate time to kidney replacement therapy (KRT) for children with chronic kidney disease (CKD). Here, we aimed to develop and validate a prediction tool based on common clinical variables for time to KRT in children using statistical learning methods and design a corresponding online calculator for clinical use. Among 890 children with CKD in the Chronic Kidney Disease in Children (CKiD) study, 172 variables related to sociodemographics, kidney/cardiovascular health, and therapy use, including longitudinal changes over one year were evaluated as candidate predictors in a random survival forest for time to KRT. Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanzhitao发布了新的文献求助10
1秒前
孙栋发布了新的文献求助30
2秒前
5秒前
小海豚完成签到 ,获得积分10
8秒前
天天快乐应助頔頔哒哒采纳,获得10
9秒前
LQ留下了新的社区评论
10秒前
飞鸟发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
了了完成签到,获得积分10
12秒前
开心的章鱼哥完成签到,获得积分10
13秒前
14秒前
15秒前
完美世界应助美满的天薇采纳,获得10
15秒前
可爱的函函应助淋漓尽致采纳,获得10
16秒前
小蘑菇应助飞鸟采纳,获得10
17秒前
zl发布了新的文献求助10
17秒前
111关注了科研通微信公众号
18秒前
天天快乐应助科研通管家采纳,获得30
18秒前
温暖南莲应助科研通管家采纳,获得20
18秒前
Singularity应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
在水一方应助科研通管家采纳,获得10
19秒前
小马甲应助科研通管家采纳,获得10
19秒前
19秒前
李爱国应助科研通管家采纳,获得10
19秒前
starleo发布了新的文献求助10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
不认识发布了新的文献求助10
19秒前
19秒前
21秒前
Carol_Wang完成签到,获得积分10
21秒前
23秒前
sukasuka发布了新的文献求助10
23秒前
oceanao应助Darker采纳,获得10
24秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158244
求助须知:如何正确求助?哪些是违规求助? 2809520
关于积分的说明 7882540
捐赠科研通 2468075
什么是DOI,文献DOI怎么找? 1313863
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943